1. 遥感影像数据格式
遥感影像数据是遥感研究的核心,常见的格式包括:
(1) GeoTIFF
-
特点:
-
包含地理参考信息的TIFF文件,支持多波段数据。
-
广泛用于存储卫星影像、航空影像。
-
-
用途:
-
土地利用分类、植被指数计算、变化检测等。
-
-
常见数据源:
-
Landsat、Sentinel-2、MODIS 等卫星影像。
-
(2) ENVI 格式
-
特点:
-
ENVI软件使用的专有格式,包括一个头文件(.hdr)和一个数据文件(.dat)。
-
支持多光谱和高光谱数据。
-
-
用途:
-
高光谱分析、遥感影像处理。
-
-
常见数据源:
-
AVIRIS、Hyperion 等高光谱传感器数据。
-
(3) HDF/HDF5
-
特点:
-
分层数据格式,支持多维数据和元数据。
-
常用于存储科学数据。
-
-
用途:
-
大气、海洋、陆地遥感数据分析。
-
-
常见数据源:
-
MODIS、VIIRS、AIRS 等传感器数据。
-
(4) NetCDF
-
特点:
-
类似于HDF,用于存储多维科学数据。
-
常用于气候、气象和海洋遥感数据。
-
-
用途:
-
时间序列分析、气候变化研究。
-
-
常见数据源:
-
CMIP(气候模型数据)、ERA5(气象再分析数据)。
-
(5) JPEG 2000
-
特点:
-
支持无损压缩和高分辨率影像。
-
-
用途:
-
高分辨率卫星影像存储和分发。
-
-
常见数据源:
-
WorldView、GeoEye 等商业卫星影像。
-
2. 矢量数据格式
矢量数据通常用于辅助遥感分析,常见的格式包括:
(1) Shapefile
-
特点:
-
ESRI开发的矢量数据格式,由多个文件组成(.shp, .shx, .dbf等)。
-
广泛用于存储点、线、面等矢量数据。
-
-
用途:
-
样本点采集、土地利用分类验证、边界提取等。
-
(2) GeoJSON
-
特点:
-
基于JSON的开放格式,易于网络传输和共享。
-
-
用途:
-
网络地图应用、数据共享。
-
(3) KML/KMZ
-
特点:
-
Google Earth使用的格式,支持三维地理数据。
-
-
用途:
-
可视化分析、结果展示。
-
3. 其他数据格式
(1) ASCII Grid
-
特点:
-
文本格式,存储栅格数据。
-
-
用途:
-
简单的栅格数据交换。
-
(2) LAS/LAZ
-
特点:
-
激光雷达(LiDAR)数据格式。
-
-
用途:
-
地形建模、森林结构分析。
-
4. 论文中数据格式的选择
-
根据研究内容:
-
如果研究涉及影像分类、变化检测,通常使用 GeoTIFF 或 ENVI 格式。
-
如果研究涉及时间序列分析,可能使用 HDF 或 NetCDF。
-
如果研究涉及高光谱分析,通常使用 ENVI 格式。
-
-
根据数据来源:
-
不同传感器和数据提供商有各自的默认格式(如MODIS使用HDF,Landsat使用GeoTIFF)。
-
-
根据期刊要求:
-
部分期刊可能对数据格式有特定要求,需在投稿前确认。
-
5. 数据格式转换工具
-
ArcGIS:
-
支持多种格式的转换(如GeoTIFF、Shapefile、HDF等)。
-
-
QGIS:
-
开源工具,支持多种格式的导入和导出。
-
-
GDAL/OGR:
-
命令行工具,支持批量格式转换。
-
-
ENVI:
-
支持高光谱数据的格式转换。
-
Shapefile补充说明
shp文件的解释:shp文件属于存储矢量数据的一种通用格式,但不是一个文件,是对应的一个文件夹,包含至少三个二进制文件,对应的用途各不相同,几何信息存储在shp文件跟shx文件中,属性信息存储在dbf文件中。索引及对应的空间信息可以存储在更多的文件中,使用时不需要知道文件中的任何东西,但是必须确保他们都存储在同一个文件夹中。