灰狼优化算法求解多旅行商问题(Matlab代码实现)

文章介绍了灰狼优化算法在解决多旅行商问题中的应用,这是一个基于自然选择过程的优化策略。通过初始化灰狼群体、计算适应度函数、确定领导者并更新位置,逐步寻找问题的近似最优解。文章提供了Matlab代码示例,展示了解决过程,并指出该方法适用于复杂问题的求解,但不保证找到全局最优解。
摘要由CSDN通过智能技术生成

     目录

💥1 概述

📚2 运行结果

🎉3 参考文献

👨‍💻4 Matlab代码

💥1 概述

灰狼优化算法(Grey Wolf Optimization,GWO)是一种基于自然灰狼群行为的优化算法,可以用于解决多旅行商问题(Multiple Traveling Salesman Problem,mTSP)。

多旅行商问题是经典的组合优化问题,其目标是找到多个旅行商在给定一组城市之间完成巡回旅行的最优路径,使得总旅行成本最小化。每个旅行商必须访问所有城市一次,并最终回到起始城市。

以下是使用灰狼优化算法求解多旅行商问题的一般步骤:

初始化灰狼群体:

设定灰狼种群数量和初始位置。每个灰狼的位置表示一个可能的解,即旅行商的路径。

计算适应度函数:

根据每个灰狼的位置计算适应度函数值,用于评估其路径的质量。适应度函数可以是总旅行成本,即路径长度。

确定领导者灰狼:

根据适应度函数值,选择具有较好路径的灰狼作为领导者,其位置代表当前最优解。

更新灰狼位置:

根据领导者灰狼的位置和其他灰狼的位置,使用灰狼群体的行为规则来更新灰狼的位置。

这包括追随领导者、协作、竞争和随机搜索等行为。

重复更新和优化:

重复进行步骤3和步骤4,直到达到停止条件,如达到最大迭代次数或找到满意的解。

输出最优解:

根据停止条件确定最佳路径解,即具有最小总旅行成本的路径。

需要注意的是,多旅行商问题是一个复杂的组合优化问题,其计算复杂性随着城市数量的增加而增加。灰狼优化算法可以作为一种启发式算法,尝试寻找较好的解决方案,但并不能保证找到全局最优解。对于更大规模的多旅行商问题,可能需要采用其他优化算法或改进的启发式算法来求解。

📚2 运行结果

主函数部分代码:

tic
clear
clc
%% 输入数据
dataset=importdata('input.txt');                    %数据中,每一列的含义分别为[序号,x坐标,y坐标]
x=dataset(:,2);                                     %x坐标
y=dataset(:,3);                                     %y坐标
vertexs=dataset(:,2:3);                             %提取各个城市的xy坐标
n=size(dataset,1);                                  %城市数目
m=5;                                                %旅行商数目
start=1;                                            %起点城市
h=pdist(vertexs);                                   %计算各个城市之间的距离,一共有1+2+......+(n-1)=n*(n-1)/2个
dist=squareform(h);                                 %将各个城市之间的距离转换为n行n列的距离矩阵
%% 灰狼算法参数设置
NIND=32;                                            %灰狼个体数目
MAXGEN=200;                                         %最大迭代次数
k=m;                                                %移除相邻路径的数目
%% 初始化种群
population=init_pop(NIND,n,m,start);
init_obj=obj_function(population,n,m,start,dist);   %初始种群目标函数值
%% 灰狼优化
gen=1;                                              %计数器
best_alpha=zeros(MAXGEN,n+m-1);                     %记录每次迭代过程中全局最优灰狼个体
best_obj=zeros(MAXGEN,1);                           %记录每次迭代过程中全局最优灰狼个体的目标函数值
​
alpha_individual=population(1,:);                   %初始灰狼α个体
alpha_obj=init_obj(1);                              %初始灰狼α的目标函数值
beta_individual=population(2,:);                    %初始灰狼β个体
beta_obj=init_obj(2);                               %初始灰狼β的目标函数值
delta_individual=population(3,:);                   %初始灰狼δ个体
delta_obj=init_obj(3);                              %初始灰狼δ的目标函数值
while gen<=MAXGEN
    obj=obj_function(population,n,m,start,dist);    %计算灰狼种群目标函数值
    %% 确定当前种群中的灰狼α个体、灰狼β个体和灰狼δ个体
    for i=1:NIND
        %更新灰狼α个体
        if obj(i,1)<alpha_obj 
            alpha_obj=obj(i,1); 
            alpha_individual=population(i,:);
        end
        %更新灰狼β个体
        if obj(i,1)>alpha_obj && obj(i,1)<beta_obj 
            beta_obj=obj(i,1); 
            beta_individual=population(i,:);
        end
        %更新灰狼δ个体
        if obj(i,1)>alpha_obj && obj(i,1)>beta_obj && obj(i,1)<delta_obj 
            delta_obj=obj(i,1); 
            delta_individual=population(i,:);
        end
    end
    %% 更新当前种群中灰狼个体的位置
    for i=1:NIND
        r=rand;
        individual=population(i,:);                 %第i个灰狼个体
        %概率更新灰狼个体位置
        if r<=1/3
            new_individual=cross(individual,alpha_individual,n);
        elseif r<=2/3
            new_individual=cross(individual,beta_individual,n);
        else
            new_individual=cross(individual,delta_individual,n);
        end
        population(i,:)=new_individual;             %更新第i个灰狼个体
    end
    %% 局部搜索操作
    [alpha_individual,alpha_obj]=LocalSearch(alpha_individual,n,m,k,start,dist);
    [beta_individual,beta_obj]=LocalSearch(beta_individual,n,m,k,start,dist);
    [delta_individual,delta_obj]=LocalSearch(delta_individual,n,m,k,start,dist);
    %% 记录全局最优灰狼个体
    best_alpha(gen,:)=alpha_individual;             %记录全局最优灰狼个体
    best_obj(gen,1)=alpha_obj;                      %记录全局最优灰狼个体的目标函数值
    %% 打印当前代数全局最优解
    disp(['第',num2str(gen),'代最优解的目标函数值:',num2str(alpha_obj)])
    %% 更新计数器
    gen=gen+1;                                      %计数器加1
end
%% 打印每次迭代的全局最优灰狼个体的目标函数值变化趋势图
figure;
plot(best_obj,'LineWidth',1);
title('优化过程')
xlabel('迭代次数');
ylabel('行走总距离');
%% 将全局最优灰狼个体解码为旅行商行走路线方案
bestRP=decode(alpha_individual,n,m,start);          %将全局最优灰狼个体解码为旅行商行走方案
[bestTD,bestETD,bestMETD]=travel_distance(bestRP,dist);   %全局最优灰狼个体的目标函数值
%% 画出最终行走路线图
draw_Best(bestRP,vertexs,start);
toc

🎉3 参考文献

​[1]邓飞,魏祎璇,刘奕巧等.灰狼优化算法的改进及其应用[J].统计与决策,2023,39(11):18-24.

部分理论引用网络文献,若有侵权联系博主删除。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
旅行商问题(Multi Traveling Salesman Problem,MTSP)是旅行商问题(Traveling Salesman Problem, TSP)的扩展。在MTSP中,有多个旅行商,每个旅行商需要访问一组给定的城市,并且每个城市只能被访问一次。现在需要利用灰狼算法(Grey Wolf Optimizer, GWO)来解决MTSP问题。 首先,需要基于matlab编写一个灰狼算法求解函数。该函数包括灰狼的初始化、目标函数的计算、灰狼的适应度更新、灰狼位置的更新等步骤。 然后,需要进行MTSP问题的建模。将每个旅行商的路径表示为一个解向量,其中每个元素表示访问的城市顺序。通过将每个旅行商的路径连接起来,构成一个整体的解。 接下来,利用灰狼算法求解MTSP问题。初始化一群灰狼,并随机生成它们的初始位置。根据目标函数的值来计算灰狼的适应度,选择适应度最高的灰狼作为全局最优解。 然后,通过更新灰狼的位置,利用优化策略逐步优化解。其中包括利用alpha、beta和delta等参数来调整灰狼的位置。经过多次迭代,得到最优解。 最后,将最优解解码为每个旅行商的路径,即为MTSP问题的解。将结果输出并进行评估。 综上所述,基于matlab的灰狼算法可以用来求解旅行商问题。通过灰狼算法的迭代优化策略,可以得到近似最优解。这种方法具有较高的搜索能力和全局优化能力,在实际应用中具有一定的实用性和效果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值