基于A*算法的路径规划研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、A*算法概述

二、A*算法的基本原理

三、A*算法的实现步骤

四、A*算法的优势与挑战

五、A*算法的应用领域

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于A算法的路径规划研究是一个广泛而深入的领域,A算法作为一种经典的启发式搜索算法,在路径规划、游戏开发、机器人导航等多个领域有着广泛的应用。以下是对A*算法在路径规划中的研究进行的详细探讨:

一、A*算法概述

A*算法(A-Star Algorithm)是一种在图形平面上,有多个节点的路径中,寻找一条从起点到终点的最低成本路径的算法。它结合了最佳优先搜索和Dijkstra算法的优点,通过启发式函数来估计从当前节点到目标节点的距离,从而引导搜索过程向目标节点方向进行,有效减少了搜索空间。

二、A*算法的基本原理

A*算法的核心在于其评估函数F(n),该函数由两部分组成:从起点到当前节点的实际代价G(n)和从当前节点到目标节点的估计代价H(n),即F(n) = G(n) + H(n)。

  • G(n):表示从起点到当前节点n的实际移动代价,通常通过累加从起点到n所经过的每条边的代价来计算。
  • H(n):表示从当前节点n到目标节点的估计代价,即启发式函数。选择合适的启发式函数对算法的性能和准确性有重要影响。

三、A*算法的实现步骤

  1. 初始化:创建两个集合,一个用于存放待检查的节点(Open Set),另一个用于存放已经检查过的节点(Closed Set)。将起点加入Open Set,并设置其G(n)为0,H(n)为启发式函数计算的结果,F(n)为两者之和。

  2. 循环处理

    • 从Open Set中选择F(n)值最小的节点作为当前节点。
    • 如果当前节点是目标节点,则算法结束,通过父节点指针回溯找到路径。
    • 否则,将当前节点从Open Set中移除,并加入Closed Set。
    • 遍历当前节点的所有相邻节点,对于每个相邻节点:
      • 如果节点在Closed Set中,则忽略。
      • 如果节点不在Open Set中,则将其加入Open Set,并设置其父节点为当前节点。
      • 如果节点已在Open Set中,则检查通过当前节点到达该节点的路径是否更优(即G(n)是否更小)。如果是,则更新该节点的G(n)、F(n)和父节点信息。
  3. 路径回溯:从目标节点开始,沿父节点指针回溯到起点,得到最终路径。

四、A*算法的优势与挑战

优势

  • A*算法能够在找到最短路径的同时,保持较高的搜索效率。
  • 通过调整启发式函数,可以在搜索速度和路径准确性之间进行权衡。
  • 适用于多种复杂环境下的路径规划问题。

挑战

  • 启发式函数的选择对算法性能有重要影响,但合适的启发式函数往往难以确定。
  • 在大规模图形或复杂环境中,A*算法的搜索空间可能非常大,导致计算量增加。
  • 对于动态变化的环境,A*算法可能需要重新规划路径,这会增加计算成本。

五、A*算法的应用领域

A*算法在多个领域有着广泛的应用,包括但不限于:

  • 游戏开发:在游戏角色寻路、敌人追击等场景中,A*算法能够提供高效准确的路径规划。
  • 机器人导航:在机器人自主导航、避障等任务中,A*算法能够指导机器人沿着最优路径到达目的地。
  • 地图导航服务:在地图导航应用中,A*算法可以帮助用户规划从起点到终点的最短路线。
  • 物流配送:在物流配送领域,A*算法可以优化配送路线,提高配送效率。

综上所述,A算法在路径规划领域具有重要的研究价值和应用前景。通过不断的研究和优化,可以进一步提高A算法的性能和准确性,以满足更加复杂和多样化的应用场景需求。

📚2 运行结果

部分代码:

function [inflatedm]=inflate_map(map,w)
%potntial error in distances taken (+-1cm). But we are on the safe side so
%its fine.
i=length(map(:,1);j=length(map(1,:));
w=ciel(w/2)*2;
%inflate map boundaries
inflatedm=ones(i,j);
inflatedm(w/2+1:end-w/2,w/2+1:end-w/2)=0;
%inflate obstacles
for ii=w/2:i-w/2
    for jj=w/2:j-w/2
        if map(ii,jj)=1 %if the block is occupied
            inflatedm(ii-width/2:ii+width/2,jj-width/2:jj+width/2)=1;
        end
    end
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]冉东可,彭富伦,李红光.基于A*算法的路径规划研究综述[J].电子技术与软件工程, 2020.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值