💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
在这个基于间接卡尔曼滤波的IMU与GPS融合的MATLAB仿真中,我们首先需要生成仿真数据来模拟IMU和GPS的输出。IMU(惯性测量单元)提供的是飞行器的加速度计和陀螺仪数据,用于进行状态预测。而GPS则提供位置和速度的测量值,用于对状态进行矫正,从而提高导航的准确性。
在每个时间步,我们先利用状态预测方程和IMU测量值进行状态预测,得到偏差状态预测方程的相关系数。如果在该时间步有GPS测量值可用,我们会进行量测更新,并对状态进行偏差矫正;如果没有GPS测量值,则不会进行量测更新,状态也不会被矫正,导致滤波效果降低。
通过这种融合IMU和GPS数据的方式,我们可以实现对飞行器的精确导航,提高飞行的稳定性和准确性。同时,基于MATLAB的仿真可以帮助我们验证算法的有效性,并优化导航系统的设计。
📚2 运行结果
部分代码:
errorstate0=zeros(15,1);%误差初始状态赋值
Cov=[0.01*ones(3,1);zeros(3,1);0.01*ones(3,1);zeros(3,1)];
Qc0=diag(Cov);%初始噪声方差
Rc0=diag([0.01,0.01,0.01]);%GPS测量噪声误差方差
% Qc0=diag(zeros(12,1));%初始噪声方差
% Rc0=diag(zeros(3,1));%GPS测量噪声误差方差
%可以改变量使输入的惯性元件的数据带噪声或者不带
ins = InsSolver(Qc0,Rc0);
% [state,errorstate] = ins.imu2state(acc_pure,gyro_pure,gps_pure,state0,errorstate0,tspan,step,0);
[state,errorstate] = ins.imu2state(acc_noise,gyro_noise,gps_noise,state0,errorstate0,tspan,step,0);
%plot trajactory
figure(4)
plot3(r(:,1),r(:,2),r(:,3));
title('真实轨迹');
grid on;
figure(1);
plot3(state(:,1),state(:,2),state(:,3));
title('滤波轨迹');
grid on;
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]Monocular Vision for Long-term Micro Aerial State Estimation:A
Compendium, Stephan Weiss,2013
[2]:卡尔曼滤波与组合导航原理,秦永元,P49,用到了离散系统噪声方差计算公式
[3]:Indirect Kalman Filter for 3D Attitude Estimation, Trawny, 2005