💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
TMSST(基于小波变换的多尺度空时特征融合技术)是一种图像融合方法,结合了小波变换和多尺度空时特征的概念。 小波变换是一种信号处理技术,用于将信号分解成不同频率成分。在TMSST中,小波变换被用于分解可见光和红外图像,以获取它们的空间和频率信息。 多尺度空时特征是指图像在不同尺度和空间上的特征。这些特征可以包括边缘、纹理、颜色等。在TMSST中,多尺度空时特征被用于表示图像的局部和全局信息。MSST利用小波变换将可见光和红外图像分解成不同尺度的特征,然后对这些特征进行融合。通常,融合可以采用加权平均、最大响应等方法,以获取最终的融合图像。TMSST是一种基于小波变换的多尺度空时特征融合技术,能够有效地将可见光和红外图像进行融合,以获取更丰富的信息并提高图像质量。
📚2 运行结果
主函数部分代码:
clc; clear; close all;
%% Parameters
N = 800;
fs = 200;
f = (0:N/2)*fs/N;
t = (0:N-1)/fs;
num = 1;
%% Test Signal
%Mode1
A_f2 = exp(0.002*f);
Phi_f2 = -6*f+1.6*sin(0.2*f);
X2 = A_f2.*exp(-1i*2*pi*Phi_f2);
X2(end) = -A_f2(end);
Y2 = [X2 conj(fliplr(X2(2:end-1)))];
y2 = ifft(Y2);
%Mode2
y=y2;
figure;
plot(t,y)
ylabel('Amp / v')
axis([0 5 -0.1 0.1]);
[Ws1,Wx1,tau1,as1] = WTMSST_Z(y',0.001,'cmor12-2',1000,10);
[Ws2] = WTMSST_Z(y',0.001,'cmor12-2',1000,10);
fre=scal2frq(as1,'cmor12-2',1/fs);
figure
imagesc(t,fre,abs(Wx1))
ylabel('Fre / Hz');
xlabel('Time / s');
axis xy
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]陈国军,付云鹏,于丽香,等.自适应多尺度特征融合的单目图像深度估计[J/OL].计算机系统应用:1-8[2024-06-11].https://doi.org/10.15888/j.cnki.csa.009587.
[2]姜文涛,卜艺凡.融合CNN和Transformer的图像去噪网络[J/OL].计算机系统应用:1-13[2024-06-11].https://doi.org/10.15888/j.cnki.csa.009555.