💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于自回归积分滑动平均模型(ARIMA)的电价预测是一种广泛应用的时间序列分析方法,它可以帮助我们理解历史数据的趋势,并据此预测未来电价的走势。以下是一个简化的基于ARIMA模型进行电价预测的实例过程,包括如何计算置信区间的研究方法。
实例步骤
1. 数据收集与预处理
- 收集数据:首先,需要收集一段历史的电价数据,这些数据通常可以从公开市场报告、电力交易中心或相关政府网站获取。
- 数据预处理:对数据进行清洗,去除异常值,处理缺失值(可通过插值方法处理),并检查数据是否平稳。若数据非平稳,可能需要差分操作使之平稳。
2. 模型识别
- 确定p, d, q参数:通过自相关函数(ACF)和偏自相关函数(PACF)图来帮助确定ARIMA模型的阶数(p, d, q),即自回归项、差分次数和移动平均项的阶数。
3. 模型估计与检验
- 模型拟合:使用确定的阶数(p, d, q)建立ARIMA模型,并用历史数据拟合模型参数。
- 模型检验:通过查看残差图、残差的自相关图及Ljung-Box Q统计量等,检验模型残差是否存在自相关,确保模型的有效性。
4. 预测与置信区间计算
- 未来预测:利用建立好的ARIMA模型对未来电价进行预测。
- 计算置信区间:预测的置信区间可以通过考虑模型残差的标准误差(Standard Error, SE)和学生t分布或正态分布的临界值来计算。具体来说,对于一步预测的置信区间可表示为:[ \hat{y}{t+1} \pm t{(1-\alpha/2, n-p-q-1)} \times SE ] 其中,y^t+1y^t+1 是预测值,t(1−α/2,n−p−q−1)t(1−α/2,n−p−q−1) 是基于t分布的临界值(适用于小样本),SESE 是预测误差的标准差,αα 是显著性水平(通常取0.05,对应95%置信水平),nn 是样本大小,pp 和 qq 分别是ARIMA模型的自回归项和移动平均项的阶数。
5. 结果分析
- 评估预测效果:将预测结果与实际数据对比,分析预测误差,评估模型的预测性能。
- 置信区间解读:置信区间反映了预测值的不确定性范围,区间越窄,说明预测越精确;反之,则意味着预测结果包含较大的不确定性。
注意事项
- 置信区间的准确计算依赖于模型残差的正态性假设,如果残差不服从正态分布,可能需要采用Bootstrap方法或其他非参数方法来估计置信区间。
- 在进行预测时,需注意长期预测可能受到模型结构限制和外部因素变化的影响,模型的准确性可能会降低。
以上是基于ARIMA模型进行电价预测及其置信区间研究的基本步骤和注意事项,实际操作时还需根据数据的具体情况进行适当调整。
📚2 运行结果
部分代码:、
% 计算 95% 置信区间
z = norminv(0.95);
Y_pre_CI = [Y_pre - 1.96 .* sqrt(Y_pre_RMSE), Y_pre + 1.96.* sqrt(Y_pre_RMSE)];
% 8. 输出预测结果
disp(['预测结果(', num2str(num_steps), '个步长):']);
disp(Y_pre);
disp(['预测置信区间(', num2str(num_steps), '个步长):']);
disp(Y_pre_CI);
% 9. 可视化预测结果
figure;
fill([train_size+1:train_size+num_steps, train_size+num_steps : -1 : train_size+1], [Y_pre_CI(:,1)', flip(Y_pre_CI(:,2)')], ...
'r', 'FaceColor', [1, 0.8, 0.8], 'EdgeColor', 'none')
hold on
plot(time_series_data, 'k', 'LineWidth', 1);hold on
plot(train_size+1:train_size+length(test_data), test_data, 'b', 'LineWidth', 1); hold on% 绘制测试集数据
plot(train_size+1:train_size+num_steps, Y_pre, 'r', 'LineWidth', 1);hold on
xlim([1, length(time_series_data) + num_steps]);
title('ARIMA 时间序列预测');
xlabel('时间');
ylabel('电价');
legend('95%置信区间','历史数据', '真实数据', '预测数据', 'Location', 'best');
% 10. 输出模型参数
disp(['最优模型参数: p = ', num2str(best_p), ', d = ', num2str(best_d), ', q = ', num2str(best_q)]);
disp(['最小 AIC: ', num2str(min_aic)]);
disp(['最小 BIC: ', num2str(min_bic)]);
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]曾鸣,刘玮,汪晓露.含置信区间的改进ARIMA电价预测[J].电力系统保护与控制, 2009(18):7.DOI:10.3969/j.issn.1674-3415.2009.18.006.
[2]刘琰,刑薇,丁乐群,等.基于ARIMA-GARCH模型的现货电价预测[J].能源技术经济, 2012, 24(2):59-63.DOI:10.3969/j.issn.1674-8441.2012.02.015.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取