matlab置信区间,置信区间(Confidence Interval)

一直做着的不确定性分析,很多时候会涉及到置信区间的概念,但一直没能有个清晰的认识,今天终于从网上查资料,具体核实了置信区间的含义。

95%置信区间(Confidence Interval,CI):当给出某个估计值的95%置信区间为【a,b】时,可以理解为我们有95%的信心(Confidence)可以说样本的平均值介于a到b之间,而发生错误的概率为5%。

有时也会说90%,99%的置信区间,具体含义可参考95%置信区间。

置信区间具体计算方式为:

(1)知道样本均值(M)和标准差(ST)时:

置信区间下限:a=M - n*ST;     置信区间上限:a=M + n*ST;

当求取90% 置信区间时 n=1.645

当求取95% 置信区间时 n=1.96

当求取99% 置信区间时 n=2.576

(2)通过利用蒙特卡洛(Monte Carlo)方法获得估计值分布时:

先对所有估计值样本进行排序, 置信区间下限:a为排序后第lower%百分位值;     置信区间上限:b为排序后第upper%百分位值.

当求取90% 置信区间时 lower=5  upper=95;

当求取95% 置信区间时 lower=2.5  upper=97.5

当求取99% 置信区间时 lower=0.5  upper=99.5

当样本足够大时,(1)和(2)获取的结果基本相等。

附刚准备MATLAB 求取置信区间源码:

……………………………………………………………………………………………………………………

%%% 置信区间的定义90%,95%,99%

clear

clc

sampledata=randn(10000,1);

a=0.01; %0.01 对应99%置信区间, 0.05 对应95%置信区间 ,0.1 对应90%置信区间

if a==0.01

n=2.576; % 2.576 对应99%置信区间, 1.96 对应95%置信区间 ,1.645 对应90%置信区间

elseif a==0.05

n=1.96;

elseif a==0.1

n=1.645;

end

%计算对应百分位值

meana=mean(sampledata);

stda=std(sampledata);

sorta=sort(sampledata);  %对数据从小到大排序

leng=size(sampledata,1);

CIa(1:2,1)=[sorta(leng*a/2);sorta(leng*(1-a/2))];

%利用公式计算置信区间

CIf(1:2,1)=[meana-n*stda;meana+n*stda];

…………………………………………………………………………………………………………………………

9757f6b97434162178efc884a7f0f0b9.png

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值