视觉SLAM十四讲学习笔记——第六讲 非线性优化(1)

非线性优化算法在SLAM中主要解决的问题:如何在有噪声的数据中进行准确的状态估计

1.最小二乘问题引出

        首先,将SLAM中的状态估计问题,从概率学的角度分析:已知输入数据u和观测数据z的条件下,求状态x,y的条件概率分布,由贝叶斯法则将条件概率分布表示为“后验概率=似然 * 先验概率”的形式:

        此时状态最优估计问题转化为了一个该状态下后验概率最大化(最大后验分布)问题:

         要最大化后验概率,也就是要最大化似然和先验概率的乘积,先验概率多数情况是很难知道的,因此只需要求最大似然估计

        最大似然估计的核心思想是:概率最大的事件最有可能发生,在视觉SLAM中表现为:什么样的状态下,最可能产生现在观测到的数据。接下来是通过数学模型:假设噪声项符合零均值的正态分布,因此观测数据的条件概率也满足正态分布,并使用最小化负对数来求解一个高斯分布的最大似然。P123-124对上述过程有详细推导,这里不做赘述,最终得到一个最小二乘问题。至此SLAM中的状态估计问题的分析思路:

 2.最小二乘问题的唯一解?

         P125的批量状态估计得示例中,最后得到一个最小二乘问题,同时作者给出了这个问题的唯一解,在后文中我并没有找到和这一段呼应的内容,这里用自己的方法简单证明用一下:

         首先回顾一下各个变量的定义以及各个矩阵、向量的维度(这个我认为很重要),所有的定义方式和书上相同:

        这部分公式推导出现了一些问题,虽然结果看似是对的,但是事实上属于是强行解释了,主要问题出现在数值函数、向量函数、矩阵函数分别对数值、向量、矩阵的求导之间是不同的,此问题下属于是数值函数对向量求导,因此公式有些不同,这里补充正确的公式,就不在原过程中修改了(文件丢了,不想再敲一遍了...),带入进去还是比较好理解的,注意这里面加粗的是向量,未加粗的是数值函数。实际上公式里的f对应我们的目标函数F,向量函数g对应着误差e,待求的向量都是x

 

3.手写高斯牛顿法

        这里使用了一个简单的曲线拟合的问题来演示,这部分有详细的分析过程,唯一让我比较困惑的是最终确定的牛顿增量方程:

         其中的\sigma^{^{2}}是预设的高斯噪声的方差,这一步就显得很奇怪,首先等式左右两侧的\sigma^{^{2}}对等式完全没有影响,完全抵消掉了;其次在整个高斯牛顿法的分析过程中并没有涉及到这样的内容;最后在实际问题的求解过程中,我们不可能预先知道噪声高斯分布的参数。总之,我个人认为这一步毫无意义,不知道是不是有什么我没有意识到的作用。。。

        最后附上手写高斯牛顿法的代码,也是在ch6/gaussNewton.cpp的基础上加了一些注释,同时测试了一下去掉\sigma^{^{2}}的效果,结果是完全没有影响,甚至运算速度更快了一些...

#include <iostream>
#include <chrono>
#include <opencv2/opencv.hpp>
#include <Eigen/Core>
#include <Eigen/Dense>

using namespace std;
using namespace Eigen;

int main(int argc, char **argv) {
  double ar = 1.0, br = 2.0, cr = 1.0;         // 真实参数值
  double ae = 2.0, be = -1.0, ce = 5.0;        // 估计参数值(初始值):应该是随意给的
  int N = 100;                                 // 数据点
  double w_sigma = 1.0;                        // 噪声Sigma值
  double inv_sigma = 1.0 / w_sigma;            // Sigma的倒数
  cv::RNG rng;                                 // OpenCV随机数产生器
  //生成含有高斯噪声的数据
  //x_data:0-1 均匀分布
  //y_data:在真实值的基础上增加随机的高斯噪声
  vector<double> x_data, y_data;      // 数据
  for (int i = 0; i < N; i++) {
    double x = i / 100.0;
    x_data.push_back(x);
    y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma * w_sigma));
  }

  // 开始Gauss-Newton迭代
  int iterations = 100;    // 迭代次数
  double cost = 0, lastCost = 0;  // 本次迭代的cost和上一次迭代的cost,cost:代价函数
  //定时器:测算运算时间
  chrono::steady_clock::time_point t1 = chrono::steady_clock::now();

  for (int iter = 0; iter < iterations; iter++) {
    //开始进行一次迭代
    Matrix3d H = Matrix3d::Zero();             // Hessian = J^T W^{-1} J in Gauss-Newton
    Vector3d b = Vector3d::Zero();             // bias
    cost = 0;
    //计算当前增量方程
    for (int i = 0; i < N; i++) {
      double xi = x_data[i], yi = y_data[i];  // 第i个数据点
      double error = yi - exp(ae * xi * xi + be * xi + ce);
      Vector3d J;
      // 雅可比矩阵
      J[0] = -xi * xi * exp(ae * xi * xi + be * xi + ce);  // de/da
      J[1] = -xi * exp(ae * xi * xi + be * xi + ce);  // de/db
      J[2] = -exp(ae * xi * xi + be * xi + ce);  // de/dc
      // 计算H、b
      H +=  J * J.transpose();
      b += - error * J;
      //H +=  J *inv_sigma*inv_sigma* J.transpose();
      //b += - error*inv_sigma*inv_sigma * J;
      // 代价函数
      cost += error * error;
    }

    // 求解线性方程 Hx=b :cholesky分解
    Vector3d dx = H.ldlt().solve(b);
    // 判断是否有结果
    if (isnan(dx[0])) {
      cout << "result is nan!" << endl;
      break;
    }
    // 如果未能使目标函数值减小 则停止迭代
    if (iter > 0 && cost >= lastCost) {
      cout << "cost: " << cost << ">= last cost: " << lastCost << ", break." << endl;
      break;
    }
    // 更新变量
    ae += dx[0];
    be += dx[1];
    ce += dx[2];
    // 记录代价函数(目标函数)值
    lastCost = cost;
    //输出每次迭代的结果
    cout << "total cost: " << cost << ", \t\tupdate: " << dx.transpose() <<
         "\t\testimated params: " << ae << "," << be << "," << ce << endl;
  }

  chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
  chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "solve time cost = " << time_used.count() << " seconds. " << endl;

  cout << "estimated abc = " << ae << ", " << be << ", " << ce << endl;
  return 0;
}

        

  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
在《视觉SLAM十四》中,章节安排如下: 1. 数学基础部分:介绍这本书的基本信息,包括自测题。概述SLAM系统的组成和各模块的工作。介绍三维空间运动、李群和李代数、针孔相机模型以及非线性优化。完成一个曲线拟合的实验。 2. SLAM技术部分:解特征点法的视觉里程计,包括特征点的提取与匹配、对极几何约束的计算、PnP和ICP等方法。学习直接法的视觉里程计,包括光流和直接法的原理,并使用g2o实现一个简单的RGB-D直接法。构建一个视觉里程计框架,解决优化和关键帧选择的问题。深入讨论后端优化,包括Bundle Adjustment和位姿图的优化。介绍回环检测和地图构建的方法。最后,介绍当前的开源SLAM项目和未来的发展方向。 另外,对于四元数的学习,可以先了解复平面的概念。复平面是一个用来描述复数的平面,其中实部和虚部分别对应平面的横坐标和纵坐标。了解复平面后,可以开始学习四元数的概念和应用。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [视觉SLAM十四笔记](https://blog.csdn.net/dada19980122/article/details/111404967)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [【视觉SLAM十四笔记【逐行代码带你解析】【适合纯小白 ps:因为我就是】(持续更新中)](https://blog.csdn.net/R_ichun/article/details/131964588)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值