K-近邻算法

  1. from sklearn import datasets
  2. from sklearn.model_selection import train_test_split
  3. from sklearn.neighbors import KNeighborsClassifier as KNN
  4. from sklearn.metrics import accuracy_score
  5. import pandas as pd
  6. import numpy as np
  7. import matplotlib.pyplot as plt
  8. plt.rcParams['font.sans-serif'] = ['SimHei']
  9. data = pd.read_csv('data.csv')
  10. datas = np.array(data)
  11. x = np.array(data[['radius_mean','texture_mean']])
  12. data['diagnosis'] = data['diagnosis'].map({'M': 1, 'B': 0})
  13. y = np.array(data['diagnosis'])
  14. X_train,X_test,y_train,y_test = \
  15. train_test_split(x, y,test_size = 0.3, random_state = 24)
  16. #模型拟合,k值为3
  17. knn = KNN(n_neighbors = 2)
  18. knn.fit(X_train,y_train)
  19. acc = knn.score(X_test, y_test)
  20. acc1 = knn.score(X_train, y_train)
  21. #模型预测
  22. pred_label = knn.predict(X_test)
  23. print(f'预测结果:{pred_label}')
  24. print(f'真实结果:{y_test}')
  25. #返回测试单位个数的概率估计。
  26. P_x1 = knn.predict_proba([[0.9,.3]])
  27. print(P_x1)
  28. #返回给定测试数据和标签的平均精度。即模型的测试得分。
  29. accuracy = accuracy_score(pred_label, y_test)
  30. print("k-近邻测试集得分:",acc)
  31. print("k-近邻训练集得分:",acc1)
  32. print(f'模型预测精确度:{accuracy}')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

举报

选择你想要举报的内容(必选)
  • 内容涉黄
  • 政治相关
  • 内容抄袭
  • 涉嫌广告
  • 内容侵权
  • 侮辱谩骂
  • 样式问题
  • 其他
点击体验
DeepSeekR1满血版
程序员都在用的中文IT技术交流社区

程序员都在用的中文IT技术交流社区

专业的中文 IT 技术社区,与千万技术人共成长

专业的中文 IT 技术社区,与千万技术人共成长

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

客服 返回顶部