语义分割:标注json文件转mask

  • 以下代码支持,可以支持新版本的labelme,不需要要卸载重新安装labelme 3.16.7
  • 可以直接根据当前新版本的labelme标注好的json文件,直接进行mask转换
  • 这个写的比较细节
    import argparse
    import base64
    import json
    import os
    import os.path as osp
     
    import imgviz
    import PIL.Image
     
    from labelme.logger import logger
    from labelme import utils
     
     
    def main():
        logger.warning(
            "This script is aimed to demonstrate how to convert the "
            "JSON file to a single image dataset."
        )
        logger.warning(
            "It won't handle multiple JSON files to generate a "
            "real-use dataset."
        )
     
        # json_file是标注完之后生成的json文件的目录。out_dir是输出目录,即数据处理完之后文件保存的路径
        json_file = r"D:\img\json_dir"
        
        out_jpgs_path   = "datasets/JPEGImages"
        out_mask_path   = "datasets/SegmentationClass"
    
        # 如果输出的路径不存在,则自动创建这个路径
        if not osp.exists(out_jpgs_path):
            os.mkdir(out_jpgs_path)
        
        if not osp.exists(out_mask_path):
            os.mkdir(out_mask_path)
     
        for file_name in os.listdir(json_file):
            # 遍历json_file里面所有的文件,并判断这个文件是不是以.json结尾
            if file_name.endswith(".json"):
                path = os.path.join(json_file, file_name)
                if os.path.isfile(path):
                    data = json.load(open(path))
     
                    # 获取json里面的图片数据,也就是二进制数据
                    imageData = data.get("imageData")
                    # 如果通过data.get获取到的数据为空,就重新读取图片数据
                    if not imageData:
                        imagePath = os.path.join(json_file, data["imagePath"])
                        with open(imagePath, "rb") as f:
                            imageData = f.read()
                            imageData = base64.b64encode(imageData).decode("utf-8")
                    #  将二进制数据转变成numpy格式的数据
                    img = utils.img_b64_to_arr(imageData)
    
                    
                    # 将类别名称转换成数值,以便于计算
                    label_name_to_value = {"_background_": 0}
                    for shape in sorted(data["shapes"], key=lambda x: x["label"]):
                        label_name = shape["label"]
                        if label_name in label_name_to_value:
                            label_value = label_name_to_value[label_name]
                        else:
                            label_value = len(label_name_to_value)
                            label_name_to_value[label_name] = label_value
                    lbl, _ = utils.shapes_to_label(img.shape, data["shapes"], label_name_to_value)
     
                    label_names = [None] * (max(label_name_to_value.values()) + 1)
                    for name, value in label_name_to_value.items():
                        label_names[value] = name
     
                    lbl_viz = imgviz.label2rgb(
                        label=lbl, image=imgviz.asgray(img), label_names=label_names, loc="rb"
                    )
     
            
                    # 将输出结果保存,
                    PIL.Image.fromarray(img).save(osp.join(out_jpgs_path, file_name.split(".")[0]+'.jpg'))
                    utils.lblsave(osp.join(out_mask_path, "%s.png" % file_name.split(".")[0]), lbl)
        
        print("Done")
     
     
     
    if __name__ == "__main__":
        main()
    
    ,其他转换都或多少不好用
语义分割数据标注通常使用JSON格式来存储标注信息。为了将JSON格式的标注数据换为PNG格式,可以按照以下步骤进行: 1. **读取JSON文件**:首先,需要读取包含标注信息的JSON文件JSON文件中通常包含图像的尺寸、类别名称和每个像素的类别标签等信息。 2. **解析JSON数据**:解析JSON文件,提取出每个像素的类别标签。 3. **创建PNG图像**:根据解析出的类别标签,创建一个与原图像尺寸相同的PNG图像,并将每个像素的类别标签映射到PNG图像的像素值上。 4. **保存PNG图像**:最后,将生成的PNG图像保存到指定路径。 以下是一个简单的Python示例代码,演示如何将JSON格式的语义分割数据换为PNG格式: ```python import json import numpy as np from PIL import Image def json_to_png(json_path, png_path, label_mapping): # 读取JSON文件 with open(json_path, 'r') as f: data = json.load(f) # 解析JSON数据 image_height = data['imageHeight'] image_width = data['imageWidth'] shapes = data['shapes'] # 初始化标签数组 labels = np.zeros((image_height, image_width), dtype=np.uint8) # 填充标签数组 for shape in shapes: label_name = shape['label'] points = shape['points'] label = label_mapping[label_name] # 创建多边形掩码 polygon = np.array(points, dtype=np.int32) mask = Image.new('L', (image_width, image_height), 0) ImageDraw.Draw(mask).polygon(polygon.flatten().tolist(), outline=label, fill=label) mask = np.array(mask) # 更新标签数组 labels = np.maximum(labels, mask) # 保存PNG图像 img = Image.fromarray(labels) img.save(png_path) # 示例用法 json_path = 'annotation.json' png_path = 'annotation.png' label_mapping = { 'background': 0, 'object1': 1, 'object2': 2 } json_to_png(json_path, png_path, label_mapping) ``` 在这个示例中,`label_mapping`字典用于将类别名称映射到整数值。`json_to_png`函数读取JSON文件,解析数据,并生成对应的PNG图像。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值