人脸识别相似度

人脸识别中,通常将face_distances小于0.6视为同一个人,但根据实际体验,0.4可能更为合适,尤其针对亚洲人识别。该结论源于face_recognition库的识别效果。了解更多原理,可参考相关博客文章。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 import face_recognition
 known_image = face_recognition.load_image_file(image1)

 # Get the face encodings for the known images 对照片上的人像进行解码
 known_face_encoding = face_recognition.face_encodings(known_image)[0]

 known_encodings = [known_face_encoding]

 # Load a unknown image and get enconding for it 进行学生新上传的照片进行进行解码
 image_to_test = face_recognition.load_image_file(image2)
 image_to_test_encoding = face_recognition.face_encodings(image_to_test)[0]

# See how far apart the test image is from the known faces 通过欧几里得距离计算相似度,数字越接近0越说明是同一个人
face_distances = face_recognition.face_distance(known_encodings, image_to_test_encoding)

  

一般来说 face_distances<0.6 可以认为是同一个人,但是根据我的使用感觉0.4更好,因为face_recognition对于亚洲人的识别度没有那么高。

具体原理可以参考下面文章 

人脸识别相似度计算方法_liguiyuan的博客-CSDN博客_人脸相似度




 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值