人脸468个特征点检测——Google MediaPipe Face Mesh

win10,python,opencv,MediaPipe

代码参考地址:https://google.github.io/mediapipe/solutions/face_mesh

MediaPipe :https://google.github.io/mediapipe/

参考文献:Real-time Facial Surface Geometry from Monocular Video on Mobile GPUs

地址:https://arxiv.org/abs/1907.06724

代码功能简介:

1. 打开摄像头

2. 显示每一帧图像;每帧检测两张人脸;图像附加显示帧率(左上角)、人脸468个特征点;在输出窗口打印468个点的坐标(id,x,y,z)

3. 按Esc退出

-------------------------

第一步:安装opencv,MediaPipe模块:

pip install opencv-python
pip install mediapipe

第二步:

创建facemesh.py文件,代码如下:

import cv2
import mediapipe as mp
import time


mp_drawing = mp.solutions.drawing_utils
mp_face_mesh = mp.solutions.face_mesh


# For webcam input:
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
cap = cv2.VideoCapture(0)
pTime = 0

with mp_face_mesh.FaceMesh(
    max_num_faces=2,
    min_detection_confidence=0.5,
    min_tracking_confidence=0.5) as face_mesh:
  while cap.isOpened():
    success, image = cap.read()
    if not success:
      print("Ignoring empty camera frame.")
      # If loading a video, use 'break' instead of 'continue'.
      continue

    # Flip the image horizontally for a later selfie-view display, and convert
    # the BGR image to RGB.
    image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
    # To improve performance, optionally mark the image as not writeable to
    # pass by reference.
    image.flags.writeable = False
    results = face_mesh.process(image)

    # Draw the face mesh annotations on the image.
    # and print landmarks' id, x, y, z 
    image.flags.writeable = True
    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    if results.multi_face_landmarks:
      for face_landmarks in results.multi_face_landmarks:
        # Draw landmarks on the image.
        mp_drawing.draw_landmarks(
            image=image,
            landmark_list=face_landmarks,
            connections=mp_face_mesh.FACE_CONNECTIONS,
            landmark_drawing_spec=drawing_spec,
            connection_drawing_spec=drawing_spec)
        # print id, x, y, z
        # time cost 
        """
        for id,lm in enumerate(face_landmarks.landmark):
            ih, iw, ic = image.shape
            x,y = int(lm.x*iw), int(lm.y*ih)
            print(id, x,y,lm.z)
        """
        
    cTime = time.time()
    fps = 1/(cTime-pTime)
    pTime = cTime
    cv2.putText(image, f'FPS:{int(fps)}', (10,30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2)

    cv2.imshow('MediaPipe FaceMesh', image)
    if cv2.waitKey(1) & 0xFF == 27:
      cv2.destroyAllWindows()
      cap.release()
      break

第三步:运行。结果如下:

 

输出窗口:(id, x, y, z)

(0-467共468个点,x,y已转换成像素坐标)

  第四步:按Esc键退出。

### 人脸姿态估计与轮廓检测 #### 方法概述 对于人脸姿态估计,该过程旨在确定脸部相对于摄像头的方向和角度。这一任务通常依赖于一系列预先定义的关键点来描述面部结构及其变化情况[^1]。 在具体实施过程中,常用的技术路径包括但不限于: - **基于回归的方法**:这类方法试图直接预测给定输入图像中的关键点坐标。它可能利用卷积神经网络(CNNs),这些网络被设计成能够自动学习有用的表示形式来进行精确的位置定位。 - **级联回归器**:此策略涉及到多个阶段,在每一阶段都会更新对面部形态参数的最佳猜测直到达到满意的精度水平为止。这种方法的一个例子是由Cascaded Regression提出的方案,其核心在于逐步细化初始粗略估计的结果。 - **热图生成法**:一些先进的框架会输出一组代表不同部位可能性分布的地图——即所谓的“heatmaps”。随后通过对这些地图应用特定规则或算法找到最有可能存在的位置作为最终的估计值。 针对轮廓检测而言,则更侧重于描绘出完整的外貌边界线以及内部器官如眼睛、鼻子等的具体外形。为了达成目标,往往采取如下措施: - **边缘增强运算符的应用**(Edge Enhancement Operators): Sobel, Canny等算子能有效地突出物体间的界限从而便于后续处理步骤区分前景对象(此处指代人的面孔)同背景之间的差异; - **主动形状模型 (ASM)** 和 **主动外观模型(AAM)** : 这两种统计学建模方式允许系统依据先前积累的知识库去匹配并调整模板直至最佳拟合实际观测数据; - **深度学习驱动下的解决方案**: 当前主流趋势倾向于借助端到端训练的大规模深层架构完成高质量的分割作业,例如U-net架构就因其出色的性能而在医学影像等领域获得了广泛应用,并同样适用于本场景下的人脸部分精细刻画工作。 #### 工具推荐 以下是几种可用于执行上述任务的强大软件包和技术栈: - **OpenCV-Python**:作为一个开源计算机视觉库,提供了丰富的函数接口用于图像变换、特征抽取等方面的操作。特别是其中有关HOG(Histogram of Oriented Gradients)描述子的支持非常适合用来做初步筛选过滤掉不符合条件的目标候选框。 ```python import cv2 as cv face_cascade = cv.CascadeClassifier('haarcascade_frontalface_default.xml') eye_cascade = cv.CascadeClassifier('haarcascade_eye_tree_eyeglasses.xml') img = cv.imread('test.jpg') gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, scaleFactor=1.3,minNeighbors=5) for(x,y,w,h)in faces: roi_gray = gray[y:y+h,x:x+w] eyes = eye_cascade.detectMultiScale(roi_gray) ``` - **dlib**:由Davis King开发维护的一套现代C++工具集同时也包含了Python绑定版本。内置了多种高效实用的功能模块,比如前述提到过的ASM/AAM实现还有专门面向人脸识别优化后的ResNet-34预训练权重文件可供调用加载。 ```cpp #include<dlib/image_processing/frontal_face_detector.h> using namespace dlib; frontal_face_detector detector = get_frontal_face_detector(); shape_predictor sp; // Load your shape predictor model here. full_object_detection shape = sp(image,d); matrix<double> chip = extract_image_chip(image, get_face_chip_details(shape)); ``` - **MediaPipe**:谷歌推出的一款轻量化多平台媒体管线SDK,专攻实时多媒体流处理任务。内含丰富组件覆盖从原始信号采集一直到高级语义理解整个链条上的各个环节。尤其值得一提的是Face Mesh API,仅需几行代码就能轻松获得超过四百个高分辨率三维地标信息! ```javascript const { Holistic } = require('@mediapipe/holistic'); const holistic = new Holistic({locateFile: (file) => { return `https://cdn.jsdelivr.net/npm/@mediapipe/holistic/${file}`; }}); holistic.setOptions({ minDetectionConfidence:0.5, minTrackingConfidence:0.5}); holistic.onResults((results)=>{ console.log(results.faceLandmarks);}) ```
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值