目录
1、算法简介:
熵是热力学单位,在数学中,信息熵表示事件所包含的信息量的期望。根据定义,对于某项指标,可以用熵值来判断某个指标的离散程度,其熵值越小,指标的离散程度越大,该指标对综合评价的影响(权重)越大。
熵本源于热力学,后由香农(C.E.Shannon)引入信息论,根据熵的定义与原理,当系统可能处于几种不同状态,每种状态出现的概率为,则该系统的熵可定义为
。
熵权法是一种客观赋权方法。在具体使用过程中,熵权法根据各指标的变异程度,利用信息熵计算出各指标的熵权,从而的出较为客观的指标权重。
2、熵权法的基本步骤:
设有n个评价对象,m个评价指标变量,第i个评价对象关于第j个指标变量的取值为 ,构造数据矩阵
。
2.1 数据归一化
由于各项指标计量单位不统一,因此在计算综合权重前先要对他们进行归一化处理,即把指标的绝对值转化为相对值,并令。
不同的指标代表的含义不一样,有的指标越大越好,称为越大越优型指标。有的指标越小越好,称为越小越优型指标。而有些指标在某个点是最好的,成为某点最优型指标。
正向指标
负向指标
点
4.2 计算指标变异性
利用原始数据矩阵,计算第j项指标下第i方案指标值得比重
:
4.3 计算信息熵
计算第j项指标的信息熵值:
4.4 计算信息熵冗余度
计算第j项指标的信息熵冗余度 :
4.5 计算权重
计算第j项指标的权重:
4.6 计算得分
计算第i个评价对象的综合评价值:
3、例题
3.1 判断下列同学的综合成绩排名
3.2 权重
熵权法 | |||
---|---|---|---|
项 | 信息熵值e | 信息效用值d | 权重 |
语文(150) | 0.88 | 0.12 | 0.108 |
英语(150) | 0.884 | 0.116 | 0.104 |
物理(110) | 0.52 | 0.48 | 0.43 |
生物(90) | 0.898 | 0.102 | 0.091 |
化学(100) | 0.884 | 0.116 | 0.104 |
数学(150) | 0.818 | 0.182 | 0.163 |
3.3 综合评价得分
A同学 | B同学 | C同学 | D同学 | E同学 | F同学 | G同学 |
0.40 | 0.346 | 0.435 | 0.64 | 0.378 | 0.49 | 0.481 |
可知D同学综合得分最高。