YOLOv5源码中的参数超详细解析(4)— 推理部分(detect.py)

detect.py是YOLOv5目标检测算法的关键脚本,用于模型推理。该文件主要负责参数设置、模型加载、数据预处理、目标检测和结果输出。它首先通过parse_opt()解析命令行参数,然后执行run()进行目标检测。run()中包括加载参数、初始化配置、保存结果、加载模型、加载数据、推理和打印结果。detect.py涉及了数据预处理、模型预测、非极大值抑制等核心步骤,是将YOLOv5应用于实际图像和视频的目标检测任务的桥梁。

前言:Hello大家好,我是小哥谈。YOLOv5是一种先进的目标检测算法,它可以实现快速和准确的目标检测。detect.py是YOLOv5项目目录结构中的一个重要的脚本文件,它用于执行目标检测任务,可以通过命令行参数指定要检测的图像或视频文件,以及模型文件的路径。它还可以指定检测的置信度阈值和非极大值抑制(NMS)的阈值,以控制检测结果的准确率和召回率。在运行过程中,detect.py会将检测结果保存为JSON格式的文件,并在图像或视频上绘制出检测框和类别标签。🌈

 前期回顾:

             YOLOv5源码中的参数超详细解析(1)— 项目目录结构及文件解析(包括源码+网络结构图)

             YOLOv5源码中的参数超详细解析(2)— 手把手带你去解析配置文件yolov5s.yaml

             YOLOv5源码中的参数超详细解析(3)— 训练部分(train.py)| 模型训练调参

             目录

🚀1.detect.py的主要内容

🚀2.detect.py的主要作用

🚀3.detect.py的代码详解

💥💥3.1 导包和基本配置

💥💥3.2 执行main函数

💥💥3.3 设置opt参数

💥💥3.4 执行run函数

💞💞💞3.4.1 载入参数

💞💞💞3.4.2 初始化配置

💞💞​​​​​​​💞3.4.3 保存结果

💞​​​​​​​💞​​​​​​​💞3.4.4 加载模型

💞​​​​​​​💞​​​​​​​💞3.4.5 加载数据

💞​​​​​​​💞​​​​​​​💞3.4.6 推理部分

💞​​​​​​​💞​​​​​​​💞3.4.7 打印结果

🚀1.detect.py的主要内容

detect.py是一个代码文件,用于使用YOLOv5模型进行目标检测。在该文件中,有几个主要的函数和模块的定义和使用。🍃

首先,在函数 parse_opt() 中,解析了命令行参数。

然后,在函数 main() 中,调用函数 run() 来执行目标检测的主要逻辑。在函数 run() 中,首先进行了配置的初始化,然后加载数据进行预处理,接着进行目标检测的输入和NMS操作,最后保存结果并进行打印。

评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小哥谈

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值