前言:Hello大家好,我是小哥谈。在无人机航拍中,目标通常是密集分布、特征不明显的小目标,且物体尺度变化较大。因此,目标检测容易出现漏检和误检的问题。为了解决这些问题,文章提出了一种基于改进YOLOv8n航拍轻量化小目标检测算法:PECS-YOLO。该算法通过在Neck部分增加P2小目标检测层,将浅层和深层的特征图进行拼接,更好捕捉小目标的细节信息;利用轻量化卷积PartialConv引入全新的结构CSPPC来替换Neck网络中的C2f,进行模型轻量化;通过结合SPP(Spatial Pyramid Pooling)和ELAN(Efficient Layer Aggregation Network)对空间金字塔池化结构进行改造,使模型能更有效捕捉小目标特征;通过在Neck部分每个检测头前加入SE注意力机制,使网络更好地关注有用的通道,减少复杂环境中背景噪声对小目标检测任务的干扰;最后使用EfficiCIoU Loss作为边界框损失函数,把边界框的形状差异也考虑在内,增强了模型对小目标的检测能力。实验结果表明,PECS-YOLO目标检测算法在VisDrone2019-DET数据集上的mAP@0.5提高了3.5%,mAP@0.5:0.95 提高了3.7%, 并且模型的参数量相比YOLOv8n降低了约25.7%,FPS增加了约65.2%。综上所述,PECS-YOLO模型适合于无人机航拍下的小目标检测任务。🌈
目录