导数的乘积原则,也称为乘积法则,是微积分中的一个重要法则,它描述了两个函数乘积的导数如何计算。这个法则是对函数乘积进行微分的基础,对于求解复杂函数的导数非常重要。
假设有两个可导函数 \( f(x) \) 和 \( g(x) \),它们的乘积是 \( h(x) = f(x) \cdot g(x) \)。乘积法则表明,\( h(x) \) 的导数可以表示为:
\[ h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x) \]
这个法则的推导可以通过定义和极限的概念来进行:
1. 首先,根据导数的定义,我们有:
\[ f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \]
\[ g'(x) = \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x} \]
2. 接下来,考虑 \( h(x + \Delta x) = f(x + \Delta x) \cdot g(x + \Delta x) \) 的增量:
\[ \Delta h = h(x + \Delta x) - h(x) = [f(x + \Delta x) \cdot g(x + \Delta x)] - [f(x) \cdot g(x)] \]
3. 使用分配律,可以将 \( \Delta h \) 分解为:
\[ \Delta h = f(x + \Delta x) \cdot g(x + \Delta x) - f(x) \cdot g(x + \Delta x) + f(x) \cdot g(x + \Delta x) - f(x) \cdot g(x) \]
4. 然后将上式重写为:
\[ \Delta h = g(x + \Delta x) [f(x + \Delta x) - f(x)] + f(x) [g(x + \Delta x) - g(x)] \]
5. 接下来,将 \( \Delta h \) 除以 \( \Delta x \) 并取极限 \( \Delta x \to 0 \):
\[ h'(x) = \lim_{\Delta x \to 0} \frac{\Delta h}{\Delta x} = \lim_{\Delta x \to 0} \left[ g(x + \Delta x) \frac{f(x + \Delta x) - f(x)}{\Delta x} + f(x) \frac{g(x + \Delta x) - g(x)}{\Delta x} \right] \]
6. 最后,利用 \( f'(x) \) 和 \( g'(x) \) 的定义,可以得到:
\[ h'(x) = g(x) f'(x) + f(x) g'(x) \]
这就完成了乘积法则的推导。这个法则可以推广到多个函数乘积的情况,并且是求解复合函数导数的基础之一。
02-20
2万+
11-29
7048
07-07
2827