函数相乘和相除的导数及证明

函数求导简介


函数相乘求导

[ f ( x ) ⋅ g ( x ) ] ′ = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) [f(x)\cdot g(x)]'=f'(x)g(x)+f(x)g'(x) [f(x)g(x)]=f(x)g(x)+f(x)g(x)

证明:
[ f ( x ) ⋅ g ( x ) ] ′ = lim ⁡ Δ x → 0 f ( x + Δ x ) ⋅ g ( x + Δ x ) − f ( x ) ⋅ g ( x ) Δ x \qquad [f(x)\cdot g(x)]'=\lim\limits_{\Delta x\rightarrow0}\dfrac{f(x+\Delta x)\cdot g(x+\Delta x)-f(x)\cdot g(x)}{\Delta x} [f(x)g(x)]=Δx0limΔxf(x+Δx)g(x+Δx)f(x)g(x)

= lim ⁡ Δ x → 0 f ( x + Δ x ) ⋅ g ( x + Δ x ) − f ( x ) ⋅ g ( x + Δ x ) + f ( x ) ⋅ g ( x + Δ x ) − f ( x ) ⋅ g ( x ) Δ x \qquad \qquad \qquad \qquad =\lim\limits_{\Delta x\rightarrow0}\dfrac{f(x+\Delta x)\cdot g(x+\Delta x)-f(x)\cdot g(x+\Delta x)+f(x)\cdot g(x+\Delta x)-f(x)\cdot g(x)}{\Delta x} =Δx0limΔxf(x+Δx)g(x+Δx)f(x)g(x+Δx)+f(x)g(x+Δx)f(x)g(x)

= lim ⁡ Δ x → 0 f ′ ( x ) Δ x ⋅ g ( x ) + g ′ ( x ) Δ x ⋅ f ( x ) Δ x \qquad \qquad \qquad \qquad =\lim\limits_{\Delta x\rightarrow0}\dfrac{f'(x)\Delta x\cdot g(x)+g'(x)\Delta x\cdot f(x)}{\Delta x} =Δx0limΔxf(x)Δxg(x)+g(x)Δxf(x)

= f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) \qquad \qquad \qquad \qquad =f'(x)g(x)+f(x)g'(x) =f(x)g(x)+f(x)g(x)


函数相除求导

[ f ( x ) g ( x ) ] ′ = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) g 2 ( x ) [\dfrac{f(x)}{g(x)}]'=\dfrac{f'(x)g(x)-f(x)g'(x)}{g^2(x)} [g(x)f(x)]=g2(x)f(x)g(x)f(x)g(x)

证明:
[ f ( x ) g ( x ) ] ′ = lim ⁡ Δ x → 0 f ( x + Δ x ) g ( x + Δ x ) − f ( x ) g ( x ) Δ x \qquad [\dfrac{f(x)}{g(x)}]'=\lim\limits_{\Delta x\rightarrow0}\dfrac{\frac{f(x+\Delta x)}{g(x+\Delta x)}-\frac{f(x)}{g(x)}}{\Delta x} [g(x)f(x)]=Δx0limΔxg(x+Δx)f(x+Δx)g(x)f(x)

= lim ⁡ Δ x → 0 f ( x + Δ x ) g ( x ) − f ( x ) g ( x + Δ x ) g ( x + Δ x ) g ( x ) ⋅ 1 Δ x \qquad \qquad \qquad \qquad =\lim\limits_{\Delta x\rightarrow0}\dfrac{f(x+\Delta x)g(x)-f(x)g(x+\Delta x)}{g(x+\Delta x)g(x)}\cdot\dfrac{1}{\Delta x} =Δx0limg(x+Δx)g(x)f(x+Δx)g(x)f(x)g(x+Δx)Δx1

= lim ⁡ Δ x → 0 f ( x + Δ x ) g ( x ) − f ( x ) g ( x ) + f ( x ) g ( x ) − f ( x ) g ( x + Δ x ) g ( x + Δ x ) g ( x ) ⋅ 1 Δ x \qquad \qquad \qquad \qquad =\lim\limits_{\Delta x\rightarrow0}\dfrac{f(x+\Delta x)g(x)-f(x)g(x)+f(x)g(x)-f(x)g(x+\Delta x)}{g(x+\Delta x)g(x)}\cdot\dfrac{1}{\Delta x} =Δx0limg(x+Δx)g(x)f(x+Δx)g(x)f(x)g(x)+f(x)g(x)f(x)g(x+Δx)Δx1

= lim ⁡ Δ x → 0 f ′ ( x ) Δ x ⋅ g ( x ) − f ( x ) ⋅ g ′ ( x ) Δ x g 2 ( x ) ⋅ Δ x \qquad \qquad \qquad \qquad =\lim\limits_{\Delta x\rightarrow0}\dfrac{f'(x)\Delta x\cdot g(x)-f(x)\cdot g'(x)\Delta x}{g^2(x)\cdot \Delta x} =Δx0limg2(x)Δxf(x)Δxg(x)f(x)g(x)Δx

= f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) g 2 ( x ) \qquad \qquad \qquad \qquad =\dfrac{f'(x)g(x)-f(x)g'(x)}{g^2(x)} =g2(x)f(x)g(x)f(x)g(x)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值