导数的除法法则,也称为商法则,描述了两个函数商的导数如何计算。假设有两个可导函数 \( f(x) \) 和 \( g(x) \),它们的商是 \( h(x) = \frac{f(x)}{g(x)} \)。除法法则表明,\( h(x) \) 的导数可以表示为:
\[ h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} \]
这个法则的推导可以通过定义和极限的概念来进行:
1. 首先,根据导数的定义,我们有:
\[ f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \]
\[ g'(x) = \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x} \]
2. 接下来,考虑 \( h(x + \Delta x) = \frac{f(x + \Delta x)}{g(x + \Delta x)} \) 的增量:
\[ \Delta h = h(x + \Delta x) - h(x) = \frac{f(x + \Delta x)}{g(x + \Delta x)} - \frac{f(x)}{g(x)} \]
3. 使用差商的形式重写 \( \Delta h \):
\[ \Delta h = \frac{f(x + \Delta x)g(x) - f(x)g(x + \Delta x)}{g(x + \Delta x)g(x)} \]
4. 将上式分解为两部分:
\[ \Delta h = \frac{f(x + \Delta x)g(x) - f(x)g(x)}{g(x + \Delta x)g(x)} - \frac{f(x)g(x + \Delta x) - f(x)g(x)}{g(x + \Delta x)g(x)} \]
5. 简化上式:
\[ \Delta h = \frac{f(x + \Delta x) - f(x)}{g(x + \Delta x)g(x)} - \frac{f(x)[g(x + \Delta x) - g(x)]}{g(x + \Delta x)g(x)} \]
6. 进一步简化:
\[ \Delta h = \frac{f(x + \Delta x) - f(x)}{\Delta x} \cdot \frac{\Delta x}{g(x + \Delta x)g(x)} - f(x) \cdot \frac{g(x + \Delta x) - g(x)}{\Delta x} \cdot \frac{1}{g(x + \Delta x)g(x)} \]
7. 现在,取极限 \( \Delta x \to 0 \):
\[ h'(x) = \lim_{\Delta x \to 0} \frac{\Delta h}{\Delta x} = \lim_{\Delta x \to 0} \left[ \frac{f(x + \Delta x) - f(x)}{\Delta x} \cdot \frac{1}{g(x + \Delta x)g(x)} - f(x) \cdot \frac{g(x + \Delta x) - g(x)}{\Delta x} \cdot \frac{1}{g(x + \Delta x)g(x)} \right] \]
8. 利用 \( f'(x) \) 和 \( g'(x) \) 的定义,可以得到:
\[ h'(x) = \frac{f'(x)}{g(x)} - f(x) \cdot \frac{g'(x)}{g(x)^2} \]
9. 最后,将上式合并为一个分数:
\[ h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2} \]
这就完成了除法法则的推导。这个法则对于求解复杂函数的导数非常重要,特别是在处理函数的商时。
02-20
2万+

12-26
4403

11-21
1987

11-29
9380

11-01
1万+

01-16
2713
