导数的除法法则是如何推导出来的呢?

导数的除法法则,也称为商法则,描述了两个函数商的导数如何计算。假设有两个可导函数 \( f(x) \) 和 \( g(x) \),它们的商是 \( h(x) = \frac{f(x)}{g(x)} \)。除法法则表明,\( h(x) \) 的导数可以表示为:
\[ h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} \]
这个法则的推导可以通过定义和极限的概念来进行:
1. 首先,根据导数的定义,我们有:
   \[ f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \]
   
   \[ g'(x) = \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x} \]
2. 接下来,考虑 \( h(x + \Delta x) = \frac{f(x + \Delta x)}{g(x + \Delta x)} \) 的增量:
   \[ \Delta h = h(x + \Delta x) - h(x) = \frac{f(x + \Delta x)}{g(x + \Delta x)} - \frac{f(x)}{g(x)} \]
3. 使用差商的形式重写 \( \Delta h \):
   \[ \Delta h = \frac{f(x + \Delta x)g(x) - f(x)g(x + \Delta x)}{g(x + \Delta x)g(x)} \]
4. 将上式分解为两部分:
   \[ \Delta h = \frac{f(x + \Delta x)g(x) - f(x)g(x)}{g(x + \Delta x)g(x)} - \frac{f(x)g(x + \Delta x) - f(x)g(x)}{g(x + \Delta x)g(x)} \]
5. 简化上式:
   \[ \Delta h = \frac{f(x + \Delta x) - f(x)}{g(x + \Delta x)g(x)} - \frac{f(x)[g(x + \Delta x) - g(x)]}{g(x + \Delta x)g(x)} \]
6. 进一步简化:
   \[ \Delta h = \frac{f(x + \Delta x) - f(x)}{\Delta x} \cdot \frac{\Delta x}{g(x + \Delta x)g(x)} - f(x) \cdot \frac{g(x + \Delta x) - g(x)}{\Delta x} \cdot \frac{1}{g(x + \Delta x)g(x)} \]
7. 现在,取极限 \( \Delta x \to 0 \):
   \[ h'(x) = \lim_{\Delta x \to 0} \frac{\Delta h}{\Delta x} = \lim_{\Delta x \to 0} \left[ \frac{f(x + \Delta x) - f(x)}{\Delta x} \cdot \frac{1}{g(x + \Delta x)g(x)} - f(x) \cdot \frac{g(x + \Delta x) - g(x)}{\Delta x} \cdot \frac{1}{g(x + \Delta x)g(x)} \right] \]
8. 利用 \( f'(x) \) 和 \( g'(x) \) 的定义,可以得到:
   \[ h'(x) = \frac{f'(x)}{g(x)} - f(x) \cdot \frac{g'(x)}{g(x)^2} \]
9. 最后,将上式合并为一个分数:
   \[ h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2} \]
这就完成了除法法则的推导。这个法则对于求解复杂函数的导数非常重要,特别是在处理函数的商时。
 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值