欧拉乘积公式的推导过程

欧拉乘积公式的推导过程

关于欧拉乘积公式的由来

我们知道,早在古希腊时期,欧几里得(Eucl id)就用精彩的反证法证明了素数有无穷多个。随着数论研究的深入,人们很自然地对素数在自然数集上的分布产生了越来越浓厚的兴趣。1737年,著名瑞士数学家欧拉(Leonhard Euler,1707—1783)在俄国圣彼得堡科学院(St.Petersburg Academy)发表了一个极为重要的公式,为数学家们研究素数分布的规律奠定了基础。这个公式就是欧拉乘积公式,即
∑ n n − s = ∏ p ( 1 − p − s ) − 1 . \sum_{n} n^{-s}=\prod_{p}(1-p^{-s})^{-1}. nns=p(1ps)1.这个公式左边的求和对所有的自然数进行,右边的连乘积则对所有的素数进行。这个公式对所有 R e ( s )   >   1 Re(s)~>~1 Re(s)  1的复数s都成立。读者们想必认出来了,这个公式的左边正是大名鼎鼎的黎曼ζ函数在 R e ( s )   >   1 Re(s)~>~1 Re(s)  1时的级数表达式,而它的右边则是一个纯粹有关素数(且包含所有素数)的表达式,这样的形式正是黎曼ζ函数与素数分布之间存在关联的征兆。作为素数理论的基础公式,这个公式在很多地方都有提到过,那么下面我们来证明一下。

证明思路

(1) ζ ( s ) = 1 + 1 2 s + 1 3 s + 1 4 s + 1 5 s + 1 6 s + 1 7 s + . . . \zeta(s)=1+\frac{1}{2^s}+\frac{1}{3^s}+\frac{1}{4^s}+\frac{1}{5^s}+\frac{1}{6^s}+\frac{1}{7^s}+... \tag{1} ζ(s)=1+2s1+3s1+4s1+5s1+6s1+7s1+...(1)首先根据数学分析的相关理论,利用埃拉托色尼筛法,对等式两边同时乘以 1 2 s \frac{1}{2^s} 2s1 可以得到以下式子 (2) 1 2 s ζ ( s ) = 1 2 s + 1 4 s + 1 6 s

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值