第六代移动通信网络预计将具有密集的基础设施、大的天线尺寸、宽频带、高性价比的硬件、多样化的定位方法和增强的智能化。基于这样的情景,实时获取所有无线链路的信道状态信息(CSI)变得非常具有挑战性,因此便提出了基于信道知识图谱( channel knowledge map,CKM )的新方法,有望实现从传统的无环境感知通信到新型环境感知通信的范式转变。
1. 背景介绍
1.1. 6G KPIs及潜在技术
1.1.1. KPIs
6G和5G在多个关键性能指标(KPIs)上存在显著差异。6G预计将支持更高的连接密度、更高的数据速率、更低的延迟、更高的能效和更精确的定位精度,尤其是在支持极其庞大设备连接和极高数据速率的应用场景(如沉浸式通信和AI与通信的集成)方面。
指标 | 5G | 6G |
连接密度connection density | 每平方千米100万个设备(至少) | 每平方千米至少1000万个设备 |
峰值数据速率peak data rate | 高达100Gbps | 每秒数太比特(Tbps) |
延迟 latency | 最低1毫秒 | 小于1毫秒 |
能效 energy efficiency | 预计比4G高10倍 | 至少是5G网络的10倍 |
定位精度positioning accuracy | 最低1米,最高数厘米 | 精度可达到1-10厘米 |
关键应用场景 | 超高速通信、大规模连接、低延迟通信 | 沉浸式通信、大规模通信、超可靠低延迟通信(HRLLC)、普适连接、AI与通信集成、传感与通信集成(ISAC) |
1.1.2. 关键技术
为了实现上述关键性能指标(KPIs),已经从不同方面识别并研究了多种关键技术。在网络层:
技术 | 描述 |
---|---|
无小区大规模MIMO cell-free MIMO | 提供用户中心的网络架构,模糊传统的小区边界,在任何地方提供均匀的良好服务 |
非地面网络(NTNs)集成 non-terrestrial networks | 将网络扩展到三维空间,支持无人机(UAV)等空中用户,并通过无人机或卫星基站/中继提供无线连接 |
全球覆盖 | 通过NTNs,降低实现全球覆盖的成本,增强网络在自然灾害(如地震和洪水)中的弹性 |
在无线接入层:
其他方面:
技术方向 | 描述 |
---|---|
新调制技术 | OTFS调制:解决高移动场景中OFDM的载波间干扰(ICI),在延迟-多普勒域中调制信息 |
DDAM调制:利用大规模天线阵列的超高空间分辨率和多径稀疏性,解决符号间干扰(ISI),无需传统均衡 | |
被动与主动通信整合 | 反向散射与共生无线:被动设备可重用频谱和能量,同时增强主通信性能,实现互惠互利 |
集成定位、传感与通信(ILSAC) | 整合三种功能,共享网络资源,定位与传感输出可用于增强通信性能,推动位置感知通信与传感辅助通信发展 |
边缘计算与AI集成 | 边缘设备(如BS、UE)具备云计算能力,支持分布式处理丰富传感数据,实现网络AI |
边缘学习与推理:网络节点共同训练共享AI模型,共同完成AI任务,推动任务导向和语义感知通信 |
1.2. 6G重要发展趋势
6G的重要趋势包括更高的节点密度、更大维度的信道、更高效的硬件、多样化的高质量定位方法以及更智能化的网络。通过引入XL-MIMO、高频段通信、IRS等技术,以及AI和边缘计算的深度集成,6G将全面提升网络的连接性、灵活性和智能性,为未来通信开启新的篇章。
趋势 | 描述 |
---|---|
更高节点密度 | 用户侧:支持每平方千米至少1000万个设备连接,扩展用户覆盖到三维空间(如无人机和飞行机器人)。 |
基础设施侧:使用高频段(厘米波、毫米波、太赫兹),缩小小区规模,支持更密集的基站部署及被动基础设施(IRS、金属反射器)部署。 | |
更大维度的信道 | 空间维度:天线数量大幅增加(从5G的64个增至数百甚至上千),支持XL-MIMO和更高频率。 |
频率维度:系统带宽从5G的数百MHz提升到6G的GHz级别,聚合频段覆盖从6 GHz以下到毫米波和太赫兹。 | |
信道维度可能增长2到3个数量级,面临更复杂环境下信道估计的挑战。 | |
更高效的硬件 | 降低硬件和能耗成本的策略:减少RF链路数量、使用低分辨率ADC(如一位ADC)以及混合模拟/数字波束成形和镜头天线阵列技术。 |
被动和半被动技术(如IRS、共生无线)用于创建虚拟LoS链路,进一步减少RF链路需求。 | |
多样化高质量定位方法 | 精度:结合XL-MIMO和毫米波/太赫兹技术,定位精度可达亚米甚至厘米级别。 |
更新率:定位更新率提升至毫秒级别,支持六维定位(3D位置+姿态)和NLoS环境定位。 | |
非蜂窝技术:卫星定位(GPS、北斗)、激光、摄像头和惯性测量单元(IMU)等提供补充。 | |
更智能化 | 结合AI与大数据挖掘技术,通过超密集设备连接融合海量数据,支持实时分析和决策。 |
边缘计算可降低延迟,区块链和空中计算等技术提升6G智能水平。 |
1.3. 6G的新挑战与机遇
6G面临的主要挑战包括信道状态信息(CSI)获取的复杂性增加、训练开销大幅提升,以及传统通信系统在简化硬件时的技术难题。然而,这些挑战也带来了丰富的机遇,尤其是在网络密度更高和信道维度更大的情况下,6G能够收集并利用大量基于位置的信道数据。通过强大的数据挖掘能力,6G有望实现更高效的通信策略适应,推动网络的频谱效率、能效和可靠性的提升。
挑战与机遇 | 描述 |
---|---|
更难获取CSI | CSI获取困难:随着网络密度和信道维度的增加,传统的基于导频的信道训练和波束扫描方法需要更高的开销,尤其在频繁变化的环境中 |
简化硬件挑战:使用模拟或混合波束成形的系统需要更长的训练时间,增加了训练开销 。对于被动通信系统(如IRS辅助通信),开销和信号处理复杂性更大 | |
丰富的基于位置的信道数据 | 位置特定信道数据:随着无线节点密度的增加和定位方法的多样化,6G将产生大量基于位置的信道数据(如信号强度、AoA、AoD等),用于准确反映无线传播环境。 |
空间采样粒度:随着网络节点密度的增加,信道数据的空间采样精度也提高,能够更精确地学习本地无线环境 | |
强大的数据挖掘能力 | 数据挖掘能力增强:随着AI和机器学习技术的发展,6G能够有效挖掘位置特定信道数据,从而适应本地无线传播环境,提升频谱效率、能效和可靠性 |
特征选择与降维:数据挖掘还能促进自动化特征选择和降维,提高数据存储和处理效率。 |
1.4.环境感知通信与CKM的应用
随着无线通信技术的进步,6G网络逐步从传统的环境无感知通信转向环境感知通信。通过环境感知通信,能够更好地利用本地环境数据来优化信道状态预测和网络性能。信道知识图(CKM)作为环境感知通信的核心技术,通过提供位置特定的信道数据,使得6G能够实现更高效的网络设计与优化。CKM不仅可以结合物理环境地图和深度学习技术,还能够通过无线环境地图(REM)对干扰管理和资源分配提供支持。随着技术的进步,CKM的实现将从离线模拟向实时推断转变,推动6G网络向更加智能、精确的方向发展。
主题 | 描述 |
---|---|
环境感知通信的范式转变 | 从传统的环境无感知通信到环境感知通信的转变,充分利用本地环境的先验知识进行网络设计与优化。环境感知通信不仅利用设备的位置,还能利用通信发生地的实际环境信息。 |
6G中的新挑战与机遇 | 新挑战:网络密度和信道维度增加,实时信道状态信息(CSI)获取变得更加困难,尤其在采用简化硬件时。 |
新机遇:更丰富的位置特定数据、更强大的数据挖掘能力和更广泛的定位方法,使得环境感知通信变得更加可行,并有望从传统的环境无感知通信转变为环境感知通信。 | |
环境感知通信的优势 | 在传统的环境无感知通信中,由于忽略环境因素,可能会出现类似路径损耗的预测错误;而环境感知通信能够通过考虑环境因素提供更准确的信道预测。 |
环境感知通信的实施方法 | 物理环境地图:尽管可以用于离线模拟,但由于无法直接反映信道特性,需要额外的参数(如介电常数)和计算密集型处理(如射线追踪)来生成适用于实时推断的站点特定信道环境图。 |
深度学习:利用深度神经网络(如RadioUNet)从城市几何形状和发射器位置等输入推断信道路径损耗,适用于需要大量标注数据的情况。 | |
无线环境地图(REM):提供多领域的环境信息,包括地理特征、频谱使用和射频(RF)排放,广泛用于认知无线电系统中的干扰管理和资源分配。 | |
CKM(信道知识图) | CKM概念:与物理环境地图和REM不同,CKM直接反映本地环境中的无线信道属性,提供位置特定的信道知识,以增强环境感知并简化甚至消除实时CSI获取的需求。 |
CKM构建与应用:通过射线追踪等离线生成信道知识,结合在线测量更新CKM,为6G网络提供站点特定的信道数据,支持从站点特定到位置特定的信道知识推断,推动环境感知通信和传感的发展。 | |
CKM的优势与未来应用 | 数据更新与融合:CKM支持通过融合射线追踪数据和在线测量来更新信道知识图。 |
从环境无感知到环境感知:CKM将实现从忽视环境因素到充分利用环境信息的通信与传感,推动6G网络设计和优化的范式转变。 |
2. CKM(信道知识图)的相关概念解释
2.1. Channel Knowledge Map (CKM)
-
位置向量:CKM中,
表示无线链路中发射器和/或接收器的位置向量,D表示位置的维度。例如,BS中心的CKM只需要包含用户设备(UE)的位置(D = 2为地面设备,D = 3为高楼或空中设备)。
-
信道知识:
表示信道知识的向量,J取决于所需的信道知识类型和系统配置。若要获取所有子载波的复杂MIMO信道矩阵(CMM),则需要
,这是一个很大的数字。而如果我们只关心主导多径分量的关键参数(例如路径增益、延迟、角度等),则需要
,相对来说,JCPM通常比JCMM小。
-
位置特定信道知识推断:通过已知的历史位置与信道数据(
Q
和Z
),可以推断出新位置的信道知识。这使得无需复杂的实时CSI获取方法,就能根据位置推断信道属性。
2.2. CKM的基本原理
- 环境感知(environment-awareness)与位置特定知识(location-specific channel knowledge):CKM能够实现环境感知,因为当设备到达曾经访问过的同一位置时,它们会经历相似的无线环境。无线信道的变化主要受设备的移动轨迹影响,通过充分利用设备轨迹(UE trajectory)和周围环境信息(surrounding environment information),CKM显著减少了信道的不确定性,提供比传统环境无感知方法更准确的信道推断。
- 环境模型:无线信道的知识由UE的位置
和环境
(包括静态环境如地形和建筑物,以及动态环境如车辆和行人)决定。通过对历史位置和信道知识对的利用,CKM可以避免显式建模环境
,而通过数据推断信道知识。
2.3. CKM的分类
-
基于通信模式(Communication Modes)的分类:
- B2X CKM(基站中心通信):这种模式下,每个基站维护自己的CKM,通过回程链路共享不同基站的CKM,以便在用户设备之间进行环境感知通信。
- X2X CKM(设备对设备通信):这种模式下,设备之间直接通信,不经过基站。由于通信双方都可以是移动的,因此X2X CKM的维度通常比B2X CKM更大,需要更多的数据获取、存储和挖掘工作。
-
基于信道知识类型(Channel Knowledge Types)的分类:
- 区域特定信道建模参数(region-specific modelling parameters)的CKM:这种CKM提供与区域相关的无线信道建模参数(如路径损耗、Rician因子、角度分布等),适用于大范围的信道推断,但对定位精度要求不高,且相对稳定。
- 位置特定大尺度信道知识(location-specific large-scale channel knowledge)的CKM:这种类型的CKM提供有关大尺度信道特征(如是否存在LoS链路、路径损耗、阴影衰减等)的信息。与区域建模CKM不同,它不依赖于预设的数学模型,而是基于实际数据构建。
- 位置特定小尺度信道知识(location-specific small-scale channel knowledge)的CKM:这种CKM提供小尺度的详细信道信息,如时间-频率-空间域的瞬时信道增益、AoA/AoD、延迟等。它对定位精度要求较高,且需要大量存储和挖掘技术。
2.4. CKM的典型使用场景
CKM(信道知识图)被预期在需要信道信息的场景中发挥重要作用,尤其是当传统的环境无感知信道获取方法不可行或成本过高时。以下是四种典型的CKM使用场景:
- 预测尚未到达或永远无法到达的地点的信道(Channels for Yet-to-Reach or Never-to-Reach Locations):6G网络期望做出更加智能和预见性的决策,这要求网络具有对无线环境的全局视野,即知道当前设备尚未到达的地方的信道信息。CKM可以为未来的机器人、无人机等设备提供预测性通信和运动规划,避免进入盲区覆盖区域。
- 非合作节点的信道(Channels for Non-Cooperative Nodes):传统的信道训练方法通常要求发射端和接收端的设备都合作。但在许多场景中,接收方(例如窃听设备或认知无线电系统中的主接收方)可能不愿合作。CKM通过推断设备位置,可以有效地解决这一问题。
- 高维信道的推断(Channels With Large Dimensions):随着大规模MIMO和毫米波技术的应用,无线信道的维度显著增加,估计这些高维信道的成本和计算复杂度很高。CKM可以通过提供位置特定的先验信道知识来简化这一过程。
- 严格硬件/信号处理限制下的信道(Channels Under Stringent Hardware/Signal Processing Limitations):随着6G引入大量半被动设备(如反向散射无线电和IRS),以及更大规模的天线阵列,传统的完全数字波束成形可能被更节能的模拟或混合模拟/数字波束成形替代。CKM在这种情况下能够有效减少信道获取的复杂度和硬件需求。
2.6. CKM与其他相关技术的比较
以下是与CKM相关的一些其他技术,重点突出了它们与CKM的主要区别:
3. CKM的构建 Construction Channel Knowledge Maps
3.1. 数据采集 Data Acquisition
仿真生成的数据主要通过模拟无线信道来收集。这些模拟信道通常使用物理环境地图或城市地图来表示不同发射器和接收器之间的无线信道。
-
随机模型(Stochastic Models):这种模型用于大范围区域(如城市)中模拟无线信道的传播情况。常见的应用场景包括构建城市级无线电图(radio maps),用于覆盖率分析和基站规划。随机模型将信道增益分为三个部分:路径损耗(path loss)、阴影衰落(shadowing)和小尺度衰落(small-scale fading)。
- 路径损耗:计算信号随距离衰减的情况。
- 阴影衰落:通常建模为一种空间随机过程,具有配置的漂移和协方差。
- 小尺度衰落:需要根据先验信息来指定衰落的分布,如是否存在直射链接(LoS Link)。
-
射线追踪模型(Ray-tracing Models):相比随机模型,射线追踪方法需要更精细的环境细节,包括发射器和接收器的位置、周围物体的几何模型、材料属性、散射体的电磁特性以及大气和地形的介电参数。射线追踪方法计算无线信道时会模拟传播的射线,并根据环境的几何特征进行反射、散射等处理,从而得到更高精度的信道数据。然而,这种方法的计算复杂度远高于随机模型,因为需要对反射、折射和散射的射线进行大量计算。
-
混合模型(Hybrid Models):混合模型结合了随机模型和射线追踪模型的优势,可以在保证精度的同时降低计算复杂度。例如,在高塔基站(BS)的城市用户场景下,可以将大尺度的信道组件由射线追踪生成,而小尺度的信道组件由随机模型生成。混合模型也可以通过结合射线追踪和随机散射环境来生成小尺度信道。
而实测数据的采集有两种主要方式:离线测量(Offline Measurement)和在线测量(Online Measurement)。
-
离线测量:离线测量通过专门的设备采集数据。这些测量通常需要精心设计路线、控制移动速度、配置通信场景并进行数据清洗。虽然离线测量的成本较高,且劳动强度较大,但其数据质量较高,非常适合用于网络性能评估和优化。
-
在线测量:在线测量是在常规的通信过程中进行数据采集。与离线测量不同,在线测量是在通信会话结束后不立即丢弃数据,而是将数据存储下来,供后续构建无线信道模型使用。为了提高测量能力,**最小化驱动测试(MDT)**功能自3GPP Release 9起被引入。MDT可以减少传统的驱动测试,允许网络运营商从用户设备(UE)收集无线信道测量数据,进而评估网络性能。尽管MDT为运营商提供了强大的工具来构建CKM,但由于商业原因或用户设备的电池电量与隐私问题,MDT的功能可能未完全实现,或者在部分情况下被UE禁用。
3.2. Environment Model-Free CKM Construction
3.3. Environment Model-Assisted CKM Construction
核心是通过重建信号传播环境来辅助构建CKM。具体来说,环境感知模型描述了由于环境几何结构造成的信号传播,通过这些模型可以揭示数据中的隐含关联。
分段传播模型
该模型尝试根据不同的传播区域描述信道。信道可以用以下公式表示:
基于几何模型的传播区域构建
通过简化的射线追踪方法,可以描述基于环境几何的传播区域。考虑一个由 M 个网格单元构成的离散区域,定义 为一个矩阵,其中
表示第 m 个网格单元中第 l 类虚拟障碍物的高度。通过射线追踪,可以判断传播路径是否被虚拟障碍物遮挡,从而确定信号的传播区域。
例如,对于每个网格单元 m 属于传播路径 的集合
,如果虚拟障碍物的高度
小于传播路径的高度
,则表示该传播路径未被障碍物遮挡。如果传播路径穿过某个障碍物的区域,则路径会受到衰减。
环境参数估计
环境参数 H 的估计是一个挑战性问题,尤其是由于上述公式中的指示函数,估计过程可能是非凸的甚至是病态的。常见的估计方法包括基于最大似然的推断方法,或者使用深度学习方法(如卷积神经网络 CNN 或深度神经网络 DNN)来自动化估计虚拟障碍物模型。
空间损耗场模型
空间损耗场 g(q) 用于描述信号传播过程中每个位置的衰减情况。通过该模型,可以构建一个线性模型,描述从位置 到位置
之间的阴影衰落:
其中,函数 描述了从
到
所有可能传播路径的加权区域,可以采用不同的模型,如直接路径模型或椭圆传播模型。
通过这些模型,可以将空间损耗场 g(q) 离散化,并通过测量数据来估计该损耗场。最后,使用最小二乘法等优化方法来估计空间损耗场和环境参数。
虚拟障碍物模型
虚拟障碍物模型使用几何形状的虚拟障碍物来模拟信号的衰减。例如,如果信号在传播过程中完全被障碍物遮挡,则可以定义一个实心的虚拟障碍物来表示这一情况。如果传播仅受到轻微衰减,则可以定义一个轻量的虚拟障碍物。该模型的目的是重建一个无线电环境,其中的结构具有电磁意义,而非单纯的视觉环境。通过这些模型,最终可以构建出适用于任意发射机和接收机位置的 CKM,并有效地进行信道建模。