pytorch 搭建LSTM模型

两部分重要内容:1、数据各部分(模型输入、LSTM输入、LSTM输出、模型输出)维度的说明 :注:一定要清楚每个环节输入数据以及输出数据的维度,还有每个维度代表的含义(特别是 batch _size、seq_len、feature_size, timestep, embedding_size 这些变量代表什么。

一、参数配置

下面是本项目需要使用的参数以及相关变量,为了方便我们将所有参数封装到一个类中,也可以使用 argparse 参数解析方式。为了说明数据各个阶段的维度变化,特此定义了如下变量大小,小伙伴需要记住下面变量的值一遍理解下文说明各个阶段的维度大小。
 

class Config():
    data_path = '../data/wind_dataset.csv'
    timestep = 1  # 时间步长,就是利用多少时间窗口
    batch_size = 32  # 批次大小
    feature_size = 1  # 每个步长对应的特征数量,这里只使用1维,每天的风速
    hidden_size = 256  # 隐层大小
    output_size = 1  # 由于是单输出任务,最终输出层大小为1,预测未来1天风速
    num_layers = 2  # lstm的层数
    epochs = 10 # 迭代轮数
    best_loss = 0 # 记录损失
    learning_rate = 0.0003 # 学习率
    model_name = 'lstm' # 模型名称
    save_path = './{}.pth'.format(model_name) # 最优模型保存路径

config = Config()

 

for index in range(len(data) - timestep):
    dataX.append(data[index: index + timestep][:, 0])
    dataY.append(data[index + timestep][0])

dataX = np.array(dataX)
dataY = np.array(dataY)

例如,data[0:1]选择数据数组的第一行作为二维子数组,data[:1]是等效的。类似地,data[:,0:1]选择数据数组的第一列作为二维子数组。

这段代码的理解:data[index: index + timestep] 选择了一个连续的时间步数段,其起始索引为 index,结束索引为 index + timestep,这里 timestep 是一个预定义的变量。注意,这里的 index 可能是时间序列的起始位置,而 timestep 是所选时间步数段的长度。这段时间步数段的所有列都将包括在所选的子数组中。

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是使用PyTorch搭建LSTM模型的基本步骤: 1. 导入必要的库 ```python import torch import torch.nn as nn ``` 2. 定义LSTM模型 ```python class LSTMModel(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size): super(LSTMModel, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device=x.device) c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device=x.device) out, _ = self.lstm(x, (h0, c0)) out = self.fc(out[:, -1, :]) return out ``` 在这个LSTM模型中,我们定义了一个`LSTMModel`类,它继承自`nn.Module`。在`__init__`函数中,我们定义了一个LSTM层和一个全连接层。在`forward`函数中,我们首先初始化LSTM层的隐藏状态和细胞状态,然后将输入`x`传入LSTM层,并取出输出序列的最后一个时间步的输出,将其传入全连接层,得到最终的输出。 3. 定义损失函数和优化器 ```python criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) ``` 在这里,我们使用交叉熵损失函数和Adam优化器。可以根据实际情况选择其他的损失函数和优化器。 4. 训练模型 ```python for epoch in range(num_epochs): for i, (inputs, labels) in enumerate(train_loader): inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, total_step, loss.item())) ``` 在训练模型时,我们首先将输入和标签转移到设备上,然后计算模型的输出和损失。接着将梯度清零,计算梯度并更新模型参数。最后,我们每隔100个batch打印一次当前的损失。 5. 测试模型 ```python with torch.no_grad(): correct = 0 total = 0 for inputs, labels in test_loader: inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy of the model on the test images: {} %'.format(100 * correct / total)) ``` 在测试模型时,我们首先关闭梯度计算,然后对测试集进行预测,并计算模型的准确率。 以上就是使用PyTorch搭建LSTM模型的基本步骤。具体实现可以根据实际情况进行调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值