Smale-FWI入门培训(三)
一、机器学习训练方法的要点
1. 学习率(Learning Rate)的核心作用
爬山比喻:学习率相当于调整步伐大小的参数。步子太大(高学习率)容易错过最优解,步子太小(低学习率)收敛速度慢。
动态调整策略:初期用较大学习率快速接近目标,后期逐步降低以精细调整。类似人类“先粗后细”的学习方式。
过拟合风险:学习率过高可能导致模型在训练集上表现好但泛化性差,需结合验证集监控。
2. 课程学习(Curriculum Learning)的阶段性训练
人类学习类比:从简单任务逐步过渡到复杂任务,如先学加减法再学微积分。
优势是避免模型初期因困难样本“摆烂”,提升收敛效率和稳定性。
3. 迁移学习(Transfer Learning)与元学习(Meta-Learning)
迁移学习 | 元学习 |
---|---|
目标: 将从一个任务(源域)学到的知识迁移到另一个相关任务(目标域),提升目标任务的性能。 | 目标: 让模型“学会如何学习”,使其能在新任务上快速适应。 |
关注点: 跨任务或跨领域的知识复用。 | 关注点: 优化模型的学习策略和能力。 |
二、什么是观测系统?
由激发点(炮点)和检波器阵列组成,用于采集地震反射/折射信号。
单炮数据就是一次激发后,多个检波器采集的二位时间序列数据(检波点位置x时间),呈现中间强、两侧衰减的“山峰形”特征。
勘探深度与波传播时间及介质速度相关,需通过时深转换确定。
三、陆地观测系统
1.滑动窗口模式
炮点移动时,检波器阵列同步移动,形成对地下区域的多次覆盖观测。
两个方式:
1.多炮反演,丢掉最两边反演情况不好的。
2.单炮反演,将结果进行叠加。
这其实是实际的地震观测系统
2.多次覆盖优势
高数据信噪比,增加地下同一点被不同炮检对观测的次数。
3.OpenFWI的特殊性
研究中采用固定检波器+移动炮点的非对称设计,与实际滑动窗口系统存在数
据格式差异,导致模型迁移困难。
平常训练使用的观测系统
四、海上观测系统
- 托缆技术即勘探船拖曳检波器阵列,船尾激发震源,沿航线连续采集。
- 直达波数据干净(未受多次反射干扰),适合高精度成像。远距离检波器对应深层反射信号。
- 三维观测即多缆并行采集形成面状观测,相比陆地线性观测效率更高。
总结
地震勘探依赖观测系统设计与数据质量,机器学习通过动态训练策略(学习率、课程学习)和跨域技术(迁移/元学习)提升模型实用性,未来需结合领域知识解决实际数据泛化难题。