小土堆-pytorch-DataLoader的使用02_笔记

DataLoader的基本概念

dataloader是数据加载器,每次从dataset中取数据

在dataloder中 只有dataset没有默认值

DataLoader的实际应用

数据预处理和打包

数据预处理在笔记01的基础上 用笔记01下载好的数据 

以及完成数据的抓取打包

 

import torchvision
# 准备测试数据集
from torch.utils.data import DataLoader

test_data =torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor())

test_loader= DataLoader(dataset=test_data,batch_size=4,shuffle=True,num_workers=0,drop_last=False) # num_workers=0表示只有一个主进程
# 测试数据集第一张图片及target
img,target=test_data[0]  # target就是label
print(img.shape)
print(target)
# batch_size=4 每次打包4个数据 到test_loader中 shuffle=True 随机取
for data in test_loader:
    imgs,targets=data
    print(imgs.shape)
    print(targets)

运行结果(部分)

 把数据集从test_loader导入到tensorboard中

import torchvision
# 准备测试数据集
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

test_data =torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor())

test_loader= DataLoader(dataset=test_data,batch_size=64,shuffle=True,num_workers=0,drop_last=False) # num_workers=0表示只有一个主进程 drop_last=true的情况下 最后不足batch_size的那部分会舍去
# 测试数据集第一张图片及target
img,target=test_data[0]  # target就是label
print(img.shape)
print(target)

writer=SummaryWriter("dataloder")  #导包 数据已经是tensor类型 可以使用tensorboard
step=0
# batch_size=4 每次打包4个数据 到test_loader中 shuffle=True 
for data in test_loader:
    imgs,targets=data
#    print(imgs.shape)
 #   print(targets)
    writer.add_images("test_data",imgs,step)
    step=step+1

writer.close()

注意:

注意的是 tensorboard使用过程中 用的绝对路径是dataloder所在的文件夹 不是文件 dataloder文件夹是在SummaryWriter之后自动生成的 里面有你的日志文件夹

运行结果:

设置打包抓取,循环2次对比 在这种情况下shuffle=False,num_workers=0,drop_last=True

import torchvision
# 准备测试数据集
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

test_data =torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor())

test_loader= DataLoader(dataset=test_data,batch_size=64,shuffle=False,num_workers=0,drop_last=True) # num_workers=0表示只有一个主进程
# 测试数据集第一张图片及target
img,target=test_data[0]  # target就是label
print(img.shape)
print(target)

writer=SummaryWriter("dataloder")  #导包 数据已经是tensor类型 可以使用tensorboard

for epoch in range(2):
    step = 0
    for data in test_loader:
        imgs,targets=data
        writer.add_images("epoch:{}".format(epoch),imgs,step)
        step=step+1

writer.close()

运行结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小徐要考研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值