优化器
pytorch官网中优化器的位置:
讲解一个小例子
for input, target in dataset:
optimizer.zero_grad() #把上一步得到的梯度清零,以免造成其他方面的影响.
output = model(input) # 输入经过模型,得到了一个输出
loss = loss_fn(output, target) # output和target出现的误差
loss.backward() # 反向传播得到新的梯度
optimizer.step() # 每一个参数根据上一步的梯度进行调整
优化器的重点-算法Algorithms
优化器前2个参数是一样的 第一个是模型的参数,用来更新的,另一个是学习率.
后面的参数随着不同类型的算法改变而改变.
优化器的实战
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# 数据集
dataset=torchvision.datasets.CIFAR10("../data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataLoader=DataLoader(dataset,batch_size=1)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self,x):
x=self.model1(x)
return x
loss=nn.CrossEntropyLoss() #定义了loss
tudui=Tudui()
optim=torch.optim.SGD(tudui.parameters(),lr=0.01,) #这里的优化器采用随机梯度下降
for data in dataLoader:
imgs,targets=data
outputs=tudui(imgs)
result_loss=loss(outputs,targets)
optim.zero_grad()
result_loss.backward()
optim.step()
运行结果截图:
发现loss并没有和之前变化太多,我们需要多次循环,缩小loss
多次循环,下面是for循环改写的代码:
for epoch in range(20):
running_loss=0.0
for data in dataLoader:
imgs,targets=data
outputs=tudui(imgs)
result_loss=loss(outputs,targets)
optim.zero_grad()
result_loss.backward()
optim.step()
running_loss=result_loss+running_loss
print(running_loss)
运行结果截图: