Linux升级Anacodna并配置jupyterLab

在使用 Anaconda 的过程中,随着项目和需求的发展,可能需要升级 Anaconda 的 Base 环境中的 Python 版本。本文将详细介绍如何安全地进行升级,包括步骤、代码示例与最终流程图。

升级 Python

一、环境准备

在进行任何升级之前,建议先检查当前的 Python 版本以及各个库的兼容性。我们可以通过以下命令检查当前的 Python 版本:

conda info

你会看到类似以下的输出,其中包含了当前 Python 的版本信息:

(base) root@nf36m02irlit-0:/user# conda info

     active environment : base
    active env location : /opt/conda
            shell level : 1
       user config file : /root/.condarc
 populated config files : /root/.condarc
          conda version : 4.10.3
    conda-build version : not installed
         python version : 3.9.19.final.0
       virtual packages : __linux=5.15.0=0
                          __glibc=2.28=0
                          __unix=0=0
                          __archspec=1=x86_64
       base environment : /opt/conda  (writable)
      conda av data dir : /opt/conda/etc/conda
  conda av metadata url : None
           channel URLs : https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64
                          https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/noarch
                          https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64
                          https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/noarch
                          https://repo.anaconda.com/pkgs/main/linux-64
                          https://repo.anaconda.com/pkgs/main/noarch
                          https://repo.anaconda.com/pkgs/r/linux-64
                          https://repo.anaconda.com/pkgs/r/noarch
          package cache : /opt/conda/pkgs
                          /root/.conda/pkgs
       envs directories : /opt/conda/envs
                          /root/.conda/envs
               platform : linux-64
             user-agent : conda/4.10.3 requests/2.32.2 CPython/3.9.19 Linux/5.15.0-60-generic debian/10 glibc/2.28
                UID:GID : 0:0
             netrc file : None
           offline mode : False

二、创建备份环境

为了安全起见,建议先创建一个当前 base 环境的备份,以防在升级过程中出现问题。

conda create --name backup-base --clone base

通过这条命令,我们创建了一个名为 backup-base 的新环境,它是原 base 环境的完全拷贝。

三、查看可用的 Python 版本

在升级之前,最好查看一下可用的 Python 版本。我们可以使用以下命令来列出可安装的 Python 版本:

conda search python

这将输出可用的 Python 版本列表,例如:

...
python                        3.12.5      h5148396_1  pkgs/main           
python                        3.12.6      h5148396_1  anaconda/pkgs/main  
python                        3.12.6      h5148396_1  pkgs/main           
python                        3.12.7      h5148396_0  anaconda/pkgs/main  
python                        3.12.7      h5148396_0  pkgs/main           
python                        3.12.8      h5148396_0  anaconda/pkgs/main  
python                        3.12.8      h5148396_0  pkgs/main           
python                        3.12.9      h5148396_0  anaconda/pkgs/main  
python                        3.12.9      h5148396_0  pkgs/main 
...

四、升级 Python 版本

一旦决定了要升级的 Python 版本,可以使用以下命令进行升级。假设我们决定将 Python 升级到 3.9.1 版本:

conda install python=3.12.9

在执行命令时,Anaconda 会自动处理依赖关系,并提供可能需要更新或降级的软件包列表,这样有助于确保升级不会造成冲突。

您需要仔细检查这些软件包更新,并决定是否继续。通常情况下,如果所有受到影响的软件包都可以更新,您可以选择“y”来继续。

五、验证 Python 版本升级

升级完成后,我们需要确认 Python 版本是否已成功升级。执行以下命令查看当前的 Python 版本:

python --version

如果输出显示为 Python 3.12.9,则证明升级已成功。

查看 codna 的版本

conda --version

六、解决潜在依赖问题

在某些情况下,升级 Python 版本可能会导致某些库或包的问题。这时,可能需要更新其他依赖包。可以使用以下命令来更新所有包:

conda update --all

这将更新目前在环境中的所有包,以确保兼容性。

升级 jupyterLab

安装 jupyterlab

pip install jupyterlab -i https://pypi.tuna.tsinghua.edu.cn/simple
conda install ipykernel
pip install nbclassic

清理缓存

conda clean --all
pip cache purge

参考文章
anaconda如何升级base的环境的python版本_mob64ca12e3a791的技术博客_51CTO博客

### 如何在 JupyterLab 中设置 LSP 支持 要在 JupyterLab 中启用 Language Server Protocol (LSP),需要完成一系列必要的安装和配置步骤。以下是详细的说明: #### 1. 确认 JupyterLab 已经安装 确保系统中已经安装了 JupyterLab,这是使用 LSP 插件的前提条件。如果尚未安装,可以运行以下命令进行安装[^1]: ```bash pip install jupyterlab ``` #### 2. 安装 JupyterLab 的 LSP 插件 为了使 JupyterLab 能够支持 LSP 功能,需安装 `@jupyterlab/lsp` 或者 `@krassowski/jupyterlab-lsp` 扩展。推荐的方式如下: - **Server Extension**: 运行以下命令以安装服务器端扩展[^4]。 ```bash pip install --pre jupyter-lsp ``` - **Frontend Extension**: 接着安装前端扩展以实现完整的功能支持。 ```bash jupyter labextension install @krassowski/jupyterlab-lsp ``` #### 3. 安装特定语言的 LSP 服务 每种编程语言都需要对应的 LSP 服务才能正常工作。例如对于 Python,可运行以下命令安装其语言服务器: ```bash pip install python-language-server[all] ``` 其他语言的支持也可以通过类似的包管理器或者官方文档找到对应的语言服务器。 #### 4. 启动验证 JupyterLab 完成上述所有安装后,重新启动 JupyterLab 来应用更改。可以通过以下命令启动 JupyterLab[^2]: ```bash jupyter lab ``` 此时,在浏览器界面中应该能够看到由 LSP 提供的功能增强效果,比如更精确的代码补全、错误高亮以及函数签名提示等特性[^5]。 #### 注意事项 - 如果发现某些功能未生效,请确认所使用的 JupyterLab 版本与插件版本之间的兼容性问题。 - 对于 Linux 用户来说,可能还需要额外注意权限管理和依赖项满足情况。 --- ### 示例代码片段展示 LSP 效果 当正确设置了 LSP 后,Python 文件中的变量定义位置查找变得非常方便快捷。例如在一个 `.py` 文件里输入以下内容时即可获得即时反馈: ```python def example_function(arg): return arg * 2 result = example_function(10) print(result) ``` 用户只需将光标放置到 `example_function` 上方就能快速跳转至该方法的具体声明处。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伪_装

您的支持,是我持续创作的光

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值