向量的内积、长度及正交性

一.内积、长度的概念与性质
1.内积
定义:
设有n维向量x、y,令[x,y]=x1y1+x2y2+...+xnyn=x^Ty,则[x,y]称为向量x与y的内积
性质:
(一)(x,y)=(y,x)
(二)(λx,y)=λ(x,y)
(三)(x+y,z)=(x,z)+(y,z)
(四)(x,x)>=0 等号成立==(x=0)
(五)施瓦茨不等式(x,y)^2<=(x,x)(y,y)
2.长度
定义:
令||x||=根号下[x,x](即[x,x]^1/2)=根号下(x1^2+x2^2+...+xn^2),则||x||称为n维向量x的长度(范数)
性质:
(一)非负性:||x||>=0 等号成立==(x=0)
(二)齐次性:||λx||=|λ|*||x||
(三)三角不等式:||x+y||<=||x||+||y||
二.正交性相关概念
1.正交
若[x,y]=0,则称向量x与y正交(零向量与任何向量都正交)
2.正交向量组
一组两两正交的非零向量(正交向量组一定线性无关)
3.标准正交基
设n维向量e1,e2,...,er是向量空间V的一个基,若e1,e2,...,er两两正交,且都是单位向量,则称e1,e2,...,er是V的一个标准正交基
注:
(一)V中任一向量a可设为a=λ1e1+λ2e2+...+λrer,其系数λi=ei^Ta=[ei,a]
(二)施密特正交化是将普通基化为标准正交基
4.正交矩阵
若n阶矩阵A满足A^TA=E,则称A为正交矩阵
A为正交矩阵==(A^TA=E)==(AA^T=E)==(A可逆,且A^-1=A^T)==A的行(列)向量组是R^n标准正交基
5.正交变换
若P为正交矩阵,则线性变换y=Px称为正交变换
经正交变换向量长度保持不变
三.施密特正交化
1.原始基
a1,a2,...,an是V中的一组基
2.正交化

3.单位化

4.标准正交基
e1,e2,...,en即为V的一个标准正交基
四.例题解析
题型一:有关向量内积的运算
解题时要充分运用内积的性质和向量长度的概念
题型二:有关向量正交性的问题
求与已知向量正交的向量,通常采用“设未知数,解线性方程组”的方法解决
注意反对称矩阵A^T=-A
题型三:施密特正交化
利用施密特正交化可以构造出一组标准正交基
解题时可以先正交化,再单位化,也可以边正交化边单位化
题型四:有关正交矩阵的运算和证明
验证正交矩阵,通常是用定义AA^T=E
方阵的特征值与特征向量

一.特征值、特征向量相关概念
1.特征值
定义:
设A为n阶矩阵,λ是一个数,若存在一个n维非零列向量x,使Ax=λx成立,则称λ是A的一个特征值
特征值λ是特征方程|λE-A|=0的根
2.特征向量
定义:
相应的非零列向量x称为A的属于λ的特征向量
特征向量x是方程组(λE-A)x=0的非零解
3.特征方程
|λE-A|=0称为A的特征方程
4.特征多项式
f(λ)=|λE-A|称为A的特征多项式
f(λ)在复数范围内恒有解,因此,A在复数范围内有n个特征值
二.基本性质与运算
1.特征值的性质
设A的n个特征值为λ1,λ2,...,λn,则
(一)迹相同,即λ1+λ2+...+λn=a11+a22+...+ann=tr(A)
(二)λ1λ2...λn=|A|
2.性质或运算
特征值的运算结论
若λ是A的特征值,则
(1)kA的特征值为kλ
(2)A^m的特征值为λ^m
(3)f(A)=∑aiAi的特征值为f(λ)=∑aiλi
(4)A^-1的特征值为1/λ(λ!=0)
(5)A*的特征值为|A|/λ
(6)A与A^T有相同的特征值
(7)AB与BA有相同的特征值
(8)0是A的特征值==|A|=0
(9)零矩阵有n重特征值0
(10)单位矩阵有n重特征值1
(11)数量矩阵kE有n重特征值k
(12)幂等矩阵(A^2=A)的特征值只可能是0或1
(13)对合矩阵(A^2=E)的特征值只可能是1或-1
(14)k-幂矩阵(A^k=E)的特征值只可能是1的k次方根
3.特征向量的性质
(1)若x是A的属于λ的特征向量,则x一定是非零向量,且对任意非零常数k!=0,kx也是A的属于λ的特征向量
(2)设λ1,λ2是A的两个不同特征值,x1,x2是A的分别属于λ1,λ2的特征向量,则x1+x2不是A的特征向量
(3)若x1,x2,...,xm都是A的属于同一特征值λ0的特征向量,且k1x1+k2x2+...+kmxm!=0,则k1x1+k2x2+...+kmxm也是A的属于特征值λ0的特征向量
(4)设λ1,λ2,...,λm是A的m个特征值,x1,x2,...,xm依次是与之对应的特征向量,若λ1,λ2,...,λm各不相等,则x1,x2,...,xm线性无关
(5)若λ为A的y重特征值,则与λ对应的线性无关的特征向量最多有y个
三.特征值与特征向量的求法
求矩阵A的特征值λ及其对应的特征向量
(1)计算|λE-A|(|A-λE|)
(2)求|λE-A|=0的所有根λ1,λ2,...,λn,即为A的全部特征值
(3)固定一个特征值λ0,解线性方程组(λ0E-A)x=0,求出基础解系x1,x2,...,xn-y,则A的属于λ0的所有特征向量为k1x1+k2x2+...+kn-yxn-y,其中y=R(λ0E-A)
四.例题解析
题型一:计算数字型矩阵的特征值、特征向量
矩阵A的特征值λ是其特征方程|λE-A|=0的根,A的对应特征值λ的特征向量是齐次方程组(λE-A)x=0的非零解
(0是A的特征值)==(|A|=0)==A不可逆,Ax=0的基础解系就是λ=0的线性无关的特征向量
注意特征向量不为0,所以取k时不能为0

解题时运用了A,A*的特征值与特征向量关系,即若α是A的对应于特征值λ的特征向量,则α是A*的对应于相应特征值|A|/λ的特征向量
题型二:计算抽象矩阵的特征值、特征向量
运用特征值的性质和运算法则解题
题型三:特征值的应用
若已知某矩阵所有的特征值,则其行列式等于所有特征值的乘积,n重的特征值就要乘上n次
证明一个矩阵是否可逆,只需要看其特征值中是否有0,即有A可逆==(|A|!=0)==(0不是A的特征值)
题型四:证明特征值、特征向量的相关结论
n阶方阵A与A^T有相同的特征值
证明一个向量α是矩阵A的特征向量,即证存在一个常数λ使得Aα=λα成立
题型五:证明特征向量的线性无关
如果λ1,λ2是矩阵A的不同特征值,而α1,α2,...,αr和β1,β2,...,βr分别是属于特征值λ1和λ2的线性无关的特征向量,那么向量组α1,α2,...,αr和β1,β2,...,βr线性无关
题型六:含参数的特征值、特征向量的计算
相似矩阵

一.相似矩阵
1.相似的定义
设A,B是n阶矩阵,若存在可逆阵P使P^-1AP=B,则称B是A的相似矩阵,或称A与B相似,记为A~B
2.相似的性质
(一)若A~B,则A^T~B^T,A^-1~B^-1,A^k~B^k,|A|=|B|
(二)若A~B,则f(A)~f(B),且R(A)=R(B)
(三)若A~B,则|λE-A|=|λE-B|,即A与B有相同的特征多项式,故A与B有相同的特征值
(四)若A相似于对角矩阵,则A的特征值为对角矩阵的每个元
(五)若A~B,则迹相同,即a11+a22+...+ann=b11+b22+...+bnn=tr(A)=tr(B)
(六)零矩阵,单位矩阵,数量矩阵只与自己相似
二.相似对角化
1.定义
对n阶段矩阵A,若存在可逆阵P使P^-1AP=Λ为对角阵,则称方阵A可对角化
2.说明
对角阵Λ=diag(λ1,λ2,...,λn),λ1,λ2,...,λn是A的特征值,P的列向量Pi是A的对应于λi的特征向量,即APi=λiPi
3.可对角化
A可对角化==A有n个线性无关的特征向量
A的n个特征值互不相等==A与对角阵相似
4.作用
主要表现在A的多项式f(A)的计算上,若存在可逆阵P,使P^-1AP=Λ=diag(λ1,λ2,...,λn),则f(A)=Pf(Λ)P^-1
5.对角化的步骤
(一)解特征方程|A-λE|=0,并求出所有特征值
(二)对于不同的特征值λi,解方程组(A-λiE)x=0,求出所有的基础解系,若每一个λi的重数等于基础解系中向量的个数,则A可以对角化,否则A不可以对角化
(三)若A可对角化,设所有特征向量为x1,x2,...,xn,则所求的可逆阵P=(x1,x2,...,xn),并且有P^-1AP=Λ,其中Λ为对角矩阵,其中主对角线元素为全部的特征值,其排列顺序与P中列向量的排列顺序相对应
三.例题解析
题型一:矩阵相似的应用
题型二:矩阵可对角化的判定
n阶矩阵A有n个不同的特征值是A与对角阵相似的充分非必要条件
当A有n个不同特征值时,则对应与这n个特征值的特征向量线性无关,故矩阵A可以相似对角化,但当A的特征值有重根时,矩阵A仍有可能相似对角化,例如A=E
题型三:求矩阵P,使P^-1AP=Λ
题型四:求矩阵的幂
直接求一个矩阵的幂会很麻烦,但对角矩阵很容易求得,因此可以先将A化成对角矩阵B,使A=P^-1BP,则A^n=P^-1B^nP
题型五:判别抽象矩阵的可对角化
设A为三阶矩阵,且A-E,A+2E,5A-3E不可逆,试证A可相似于对角阵
证明:
因为A-E不可逆,即|E-A|=0,所以1是A的特征值,同理由A+2E,5A-3E不可逆分别得出-2和3/5也是A的特征值
所以A相似于对角元是1、-2、3/5的对角矩阵
题型六:利用相似求P,使P^-1AP=B
对称矩阵的对角化

一.对称矩阵的定义和性质
1.定义
若矩阵A满足A^T=A,则称A为对称矩阵
2.性质
(一)对称矩阵的特征值为实数
(二)对称矩阵的对应于不同特征值的特征向量是正交的
(三)n阶对称矩阵A必有n个线性无关的特征向量
(四)设A为n阶对称阵,则必存在正交阵P,使P^-1AP=P^TAP=Λ,其中Λ是以A的n个特征值为对角元的对角阵
(五)若λ是实对称矩阵A的y重特征值,则R(A-λE)=n-y,因此A对应的特征值λ的线性无关的特征向量正好有y个
二.正交相似对角化
1.求出A的全部互不相等的特征值λ1,λ2,...,λn,它们的重数依次为k1,k2,...,ks(k1+k2+...+ks=n)
2.对每个ki重特征值λi,求方程(A-λiE)x=0的基础解系,得ki个线性无关的特征向量,再把它们正交化、单位化,得ki个两两正交的单位特征向量,因k1+k2+...+ks=n,故总共可得n个两两正交的单位特征向量
3.把这n个两两正交的单位向量构成正交阵P,便又P^-1AP=P^TAP=Λ(Λ的对角元的排列次序应与P中列向量的排列次序相对应)
三.例题解析
题型一:利用对称阵的性质求对称阵
题型二:求正交阵P,使A对角化
求正交矩阵P,首先要对多重特征值对应的特征向量正交化,最后再把所有特征向量单位化即可,最后把所有标准正交化的特征向量作为列组成正交矩阵P

若n阶对称矩阵具有n个互不相同的特征值,则只需要对这n个不同特征值对应的特征向量单位化即可得到P(因为已经正交)
题型三:利用相似对角化求矩阵的幂
若P^-1AP=Λ为对角阵,则A=PΛP^-1,A^n=PΛ^nP^-1
题型四:已知特征值、特征向量求对称矩阵
运用对称矩阵属于不同特征值的特征向量相互正交求未知特征向量
题型五:综合题与证明题
设A为实对称矩阵,对任意正奇数k,必有实对称矩阵B,使B^k=A
二次型及其标准形

一.二次型的相关概念

二.矩阵的合同

三.正交变换化二次型为标准形或规范形

四.例题解析
题型一:二次型及其矩阵
由二次型求对应矩阵A,要求A中元素按下列规则取值:aii取xi^2项的系数,aij(i<j)取xixj系数的一半,二次型中不出现的元素项对应的系数取成0
若已知二次型矩阵,依照定义便可求得二次型的表达式
题型二:判断矩阵合同
题型三:正交变换化二次型为标准形或规范形
正交变换化为标准形时,标准形中平方项系数必是矩阵A的n个特征值,因为特征向量不唯一,所以正交变换也可能不唯一

二次型矩阵与其正交变换得到的标准形矩阵既合同又相似
用配方法化二次型成标准形

一.配方法化二次型为标准形

二.例题解析
题型一:用配方法化二次型为标准形
先把第一个配成平方,然后依次类推,最后都配成平方,所作的总的变换是几次变换的合成
正定二次型

一.惯性定理和正定性概念

二.对称阵A正定性、负定性的判定
1.正定性等价条件
(一)A的正惯性指数p=n
(二)A的各阶主子式均大于0
(三)A合同于单位矩阵E
(四)矩阵A的特征值全大于0
(五)存在可逆矩阵C使A=C^TC
2.负定性等价条件
(一)负惯性指数为n
(二)奇数阶主子式全小于0,偶数阶主子式全大于0
(三)A合同于矩阵-E
(四)A的特征值全小于0
三.例题解析
题型一:具体正定二次型的判定
当看到二次型的对称矩阵中元素数字比较小时,可采用求所有主子式的方法来判定
题型二:抽象正定二次型的判定
方法一:验证各阶主子式法
方法二:特征值法
方法三:因A,B正定,所以存在可逆阵P,Q使A=P^TP,B=Q^TQ
方法四:合同于单位矩阵法
注:若A,B为n阶正定矩阵,k>0,证明kA,A^k,A^-1,A*,A+B,λE-A是正定阵
题型三:含有参数的二次型正定性讨论
若矩阵满足矩阵方程,则特征值满足对应方程
题型四:含多个参数的二次型正定性讨论
本章知识总结
一.关于向量的小结
重点在于施密特正交化过程
二.关于特征值和特征向量的小结
1.首先应该明确特征向量是非零列向量,当列向量x取为零向量时,关系式Ax=λx总成立,所以这样的零向量没有意义
2.方阵A的特征值λ对应的特征向量不是唯一的,对应不同特征值的特征向量线性无关
3.特征值的运算,如求A^-1,A+kE,A*,A^k等的特征值
三.关于矩阵相似的小结
一个是矩阵相似对角化,另一个是对称阵的正交相似对角化,若n阶矩阵具有n个线性无关的特征向量,则矩阵A可以相似对角化,若A是对称阵,则可正交相似对角化
四.关于二次型的小结
化二次型为标准形,可以用配方法,正交变换法。用正交变换化二次型为标准形与对称矩阵正交相似对角化是同一个问题,只是以两种形式出现
至此,线性专栏基础内容结束,感谢您的浏览!