opencv python版(四)
harris角点检测
- 角点:角点可以是两条线的交叉处,也可以是位于相邻的两个主要方向不同的事物上的点,即某方面特别突出的点。角点目前为止还没有明确的数学定义。角点在保留图像图形重要特征的同时,可以有效地减少信息的数据量,使其信息的含量很高,有效地提高了计算的速度,有利于图像的可靠匹配。
基本原理
代码实现
cv2.cornerHarris()
- img: 数据类型为 float32 的入图像
- blockSize: 角点检测中指定区域的大小
- ksize: Sobel求导中使用的窗口大小
- k: 取值参数为 [0,04,0.06]
import cv2
import numpy as np
img = cv2.imread(r'Z:\coding\Anaconda\envs\Deep_Learning\cv_learning\dataset\111.png')
print ('img.shape:',img.shape)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 2, 3, 0.04)
print ('dst.shape:',dst.shape)
#红色点标记角点
img[dst>0.01*dst.max()]=[0,0,255]
cv2.imshow('dst',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
效果展示
Scale Invariant Feature Transform(SIFT)
图像尺度空间
-
在一定的范围内,无论物体是大还是小,人眼都可以分辨出来,然而计算机要有相同的能力却很难,所以要让机器能够对物体在不同尺度下有一个统一的认知,就需要考虑图像在不同的尺度下都存在的特点。
-
尺度空间的获取通常使用高斯模糊来实现
import cv2 import matplotlib.pyplot as plt img = cv2.imread(r'Z:\coding\Anaconda\envs\Deep_Learning\cv_learning\dataset\test_6.png') img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #GS滤波 gs = cv2.GaussianBlur(img,(3,3),0) gs_1 = cv2.GaussianBlur(img,(5,5),0) gs_2 = cv2.GaussianBlur(img,(9,9),0) gs_3 = cv2.GaussianBlur(img,(11,11),0) gs_4 = cv2.GaussianBlur(img,(13,13),0) filter = [img,gs,gs_1,gs_2,gs_3,gs_4] titles = ['origin','gs','gs_1','gs_2','gs_3','gs_4'] #plt 展示所有图像 for i in range(6): plt.subplot(2, 3, i+1) plt.title(titles[i]) plt.imshow(filter[i],'gray') plt.xticks([]), plt.yticks([]) plt.show()
得到模糊效果
-
多分辨率图像金字塔
- 高斯差分金字塔(DOG)
为了寻找尺度空间的极值点,每个像素点要和其图像域(同一尺度空间)和尺度域(相邻的尺度空间)的所有相邻点进行比较,当其大于(或者小于)所有相邻点时,该点就是极值点。如下图所示,中间的检测点要和其所在图像的3×3邻域8个像素点,以及其相邻的上下两层的3×3领域18个像素点,共26个像素点进行比较。
关键点的精确定位
这些候选关键点是DOG空间的局部极值点,而且这些极值点均为离散的点,精确定位极值点的一种方法是,对尺度空间DoG函数进行曲线拟合,计算其极值点,从而实现关键点的精确定位。
消除边界相应
- 特征点的主方向
每个特征点可以得到三个信息(x,y,σ,θ),即位置、尺度和方向。具有多个方向的关键点可以被复制成多份,然后将方向值分别赋给复制后的特征点,一个特征点就产生了多个坐标、尺度相等,但是方向不同的特征点。
生成特征描述
在完成关键点的梯度计算后,使用直方图统计邻域内像素的梯度和方向。
为了保证特征矢量的旋转不变性,要以特征点为中心,在附近邻域内将坐标轴旋转θ角度,即将坐标轴旋转为特征点的主方向。
旋转之后的主方向为中心取8x8的窗口,求每个像素的梯度幅值和方向,箭头方向代表梯度方向,长度代表梯度幅值,然后利用高斯窗口对其进行加权运算,最后在每个4x4的小块上绘制8个方向的梯度直方图,计算每个梯度方向的累加值,即可形成一个种子点,即每个特征的由4个种子点组成,每个种子点有8个方向的向量信息。
opencv SIFT函数
需要python == 3.6 opencv==3.4.1.15 才行