opencv python版(四)

opencv python版(四)

harris角点检测

  • 角点:角点可以是两条线的交叉处,也可以是位于相邻的两个主要方向不同的事物上的点,即某方面特别突出的点。角点目前为止还没有明确的数学定义。角点在保留图像图形重要特征的同时,可以有效地减少信息的数据量,使其信息的含量很高,有效地提高了计算的速度,有利于图像的可靠匹配。

基本原理

在这里插入图片描述

代码实现

cv2.cornerHarris()
  • img: 数据类型为 float32 的入图像
  • blockSize: 角点检测中指定区域的大小
  • ksize: Sobel求导中使用的窗口大小
  • k: 取值参数为 [0,04,0.06]
import cv2
import numpy as np

img = cv2.imread(r'Z:\coding\Anaconda\envs\Deep_Learning\cv_learning\dataset\111.png')
print ('img.shape:',img.shape)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 2, 3, 0.04)
print ('dst.shape:',dst.shape)

#红色点标记角点
img[dst>0.01*dst.max()]=[0,0,255]
cv2.imshow('dst',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

效果展示

Scale Invariant Feature Transform(SIFT)

图像尺度空间

  • 在一定的范围内,无论物体是大还是小,人眼都可以分辨出来,然而计算机要有相同的能力却很难,所以要让机器能够对物体在不同尺度下有一个统一的认知,就需要考虑图像在不同的尺度下都存在的特点。

  • 尺度空间的获取通常使用高斯模糊来实现

    import cv2
    import matplotlib.pyplot as plt
    
    
    img = cv2.imread(r'Z:\coding\Anaconda\envs\Deep_Learning\cv_learning\dataset\test_6.png')
    
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    
    #GS滤波
    gs = cv2.GaussianBlur(img,(3,3),0)
    gs_1 = cv2.GaussianBlur(img,(5,5),0)
    gs_2 = cv2.GaussianBlur(img,(9,9),0)
    gs_3 = cv2.GaussianBlur(img,(11,11),0)
    gs_4 = cv2.GaussianBlur(img,(13,13),0)
    
    filter = [img,gs,gs_1,gs_2,gs_3,gs_4]
    titles = ['origin','gs','gs_1','gs_2','gs_3','gs_4']
    
    
    #plt 展示所有图像
    for i in range(6):
        plt.subplot(2, 3, i+1)
        plt.title(titles[i])
        plt.imshow(filter[i],'gray')
    
    plt.xticks([]), plt.yticks([])
    plt.show()
    

    得到模糊效果

  • 多分辨率图像金字塔

  • 高斯差分金字塔(DOG)

为了寻找尺度空间的极值点,每个像素点要和其图像域(同一尺度空间)和尺度域(相邻的尺度空间)的所有相邻点进行比较,当其大于(或者小于)所有相邻点时,该点就是极值点。如下图所示,中间的检测点要和其所在图像的3×3邻域8个像素点,以及其相邻的上下两层的3×3领域18个像素点,共26个像素点进行比较。

关键点的精确定位

这些候选关键点是DOG空间的局部极值点,而且这些极值点均为离散的点,精确定位极值点的一种方法是,对尺度空间DoG函数进行曲线拟合,计算其极值点,从而实现关键点的精确定位。

消除边界相应

  • 特征点的主方向

每个特征点可以得到三个信息(x,y,σ,θ),即位置尺度方向。具有多个方向的关键点可以被复制成多份,然后将方向值分别赋给复制后的特征点,一个特征点就产生了多个坐标、尺度相等,但是方向不同的特征点。

生成特征描述

在完成关键点的梯度计算后,使用直方图统计邻域内像素的梯度和方向。

为了保证特征矢量的旋转不变性,要以特征点为中心,在附近邻域内将坐标轴旋转θ角度,即将坐标轴旋转为特征点的主方向。

旋转之后的主方向为中心取8x8的窗口,求每个像素的梯度幅值和方向,箭头方向代表梯度方向,长度代表梯度幅值,然后利用高斯窗口对其进行加权运算,最后在每个4x4的小块上绘制8个方向的梯度直方图,计算每个梯度方向的累加值,即可形成一个种子点,即每个特征的由4个种子点组成,每个种子点有8个方向的向量信息。

opencv SIFT函数

需要python == 3.6 opencv==3.4.1.15 才行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值