阶段学习总结——动态规划(2)

本文博主分享了如何解决最小正子段和和最大子矩阵和的动态规划问题,通过实例演示了如何将线性DP应用于背包问题,并介绍了01背包的变体。涉及的题目包括求解子段和、矩阵和以及背包问题的多种策略,旨在帮助读者提高动态规划技巧。
摘要由CSDN通过智能技术生成

由于上上周已经学完基本的背包问题和dp问题,这次总结博客就不罗列模板题和基础知识了。这两周主要是做了一下线性dp和背包题。模电考试占用了太多时间,导致题做的也不多(从头开始学的模电(一点没听)),趁周末赶紧补了几道题...

最小正子段和https://www.51nod.com/Challenge/Problem.html#problemId=1065

题意:找出一个子段加和为正且最小

思路:求出前缀和,用结构体存,然后由小到大排序, 假设排完后是 a0,a1, a2 ,如果a0.id<a1.id<a2.id,那么答案一定在a0.sum, (a1.sum-a0.sum), (a2.sum-a1.sum)中,如果不是顺序的, 此时答案一定没有a1.id因为a0与a1之间的区间差为负。枚举更新最小值即可

最大子矩阵和Redirect

题意:找出子矩阵元素和的最大值

思路:转化二维到一维,求每一列和,构成数组a,则最大子矩阵和对应于数组a的最大子矩阵和,枚举所有的情况,更新最大矩阵和即可

The Values You Can MakeCodeForces 687C - The Values You Can Make(01背包dp)_TianTengtt的博客-CSDN博客

题意:给定n个硬币每个硬币有a[i]的价值,问一个子集的和为x且这个子集存在与某个构成合为K的子集中。求这样的x有多少个

思路:与背包问题相似,加了个额外的状态,是否可以组成s,则:状态表示dp[i][j][p]为考虑到第i个数,当前所有数的和为j,组成和为p的子集是否可能。 如果不使用第i个数,dp[i][j][p]=dp[i-1][j][p] ;如果使用第i个数但子集不取,dp[i][j][p]=dp[i-1][j-ci][p] ;如果使用第i个数且子集取,dp[i][j][p]=dp[i-1][j-ci][p-ci]

丝绸之路丝绸之路 - 洛谷

题意:疲劳度=天气*城市距离,求M天内到达终点的疲劳度最小值

思路:状态表示 dp[i,j] 到第 i 个城市用了 j 天所需要的最小疲劳值,状态计算dp[i,j]=min(dp[i,j-1],dp[i-1,j-1]+d[i]*c[j])

回文字串[IOI2000] 回文字串 / [蓝桥杯 2016 省] 密码脱落 - 洛谷

题意:求最少插入几个字符使原字符串变成回文字串

思路:a串反转得到字串b,求ab的最长公共子序列,答案就是strlen-dp[n][n]

poj Dollar Days 3181

题意:从1到k中选任意多个数组成n,求共有几种选法

思路:完全背包问题,状态表示和状态划分两个方面思考。状态表示:f[i][j]表示用前j个数组成i的方法的数量;状态划分:一类是选第j个数f[i-j][j](选j,用来表示i-j),另一类不选第j个数f[i][j-1](不选j,用来表示i),状态转移方程:f[i][j]=f[i-j][j]+f[i][j-1]。初始化f[0][k]=1,因为需要用小状态表示大状态,所以需要优先更新i,i跑完一遍之后再更新j,表示用前1、2...k个数表示i++(1...n),直接双重循环表示f[j][i],每次循环有两种情况:1.j<i,直接f[j][i]=f[j][i-1],选不到i;2.j>=i,a[j][i]=a[j][i-1]+a[j-i][i]。这只是dp问题,该题还需要用高精度来做。

HDU-1141 Piggy-Bank

题意:n表示罐的质量,现有一个装了一些钱的罐子质量m,有t种规格不同的硬币,p[i],w[i]表示硬币的价值和它的重量,求罐子里最少的钱数

思路:完全背包问题,转化为求一定容量背包装最少价值的东西。初始化f[i][j]为inf,方便后面求可能的较小值,f[i][j]表示只考虑前i个物品,且总重量不大于j的所有选法的最小价值。状态转移方程f[i][j]=min(f[i-1][j],f[i-1][j-k*p[i]]+k*w[i]),用滚动数组优化后

for(i=0;i<t;i++){    
    for(j=w[i];j<=sum;j++){
        f[j]=min(f[j],f[j-w[i]]+p[i]);
        }
}

poj 3176

题意:n层的数字三角形,求从第一层到最后一层最大权值和

思路:状态表示f[i][j]表示第一层到第i层的最大权值和;输入f[i][j],遍历每一个数,更新其值为自身加上左上和右上中的最大值,f[i][j]+=max(f[i-1][j],f[i-1][j-1]),最后遍历一遍f[n][i]求最大值(比较最后一行的最大值)。

hdu1864(最大报销额 DP动态规划)

题意:从一堆发票中选出符合条件的发票进行报销,输出可以报销的最大数额。

思路:输入的时候注意只存储满足条件的,即单类金额超过600作废,总共金额超过1000作废,除了A,B,C三类还有其他类的作废,其他的满足条件的ABC三类看作一类进行01背包,找最大即可。状态转移方程:f[i][j] = max(f[i-1][j], f[i-1][j-v[i]] + w[i])。滚动数组:

for(int i = 0;i < l; i++){
    for(int j = w;j >= a[i]; j--){
        f[j] = max(f[j],f[j-a[i]] + a[i]);
    }
}
        

还有一些题就放在excel表里了,背包问题主要是需要想到怎样去转化成背包模型,再根据一些题目的限制条件去修改。还是要多积累。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值