由于上上周已经学完基本的背包问题和dp问题,这次总结博客就不罗列模板题和基础知识了。这两周主要是做了一下线性dp和背包题。模电考试占用了太多时间,导致题做的也不多(从头开始学的模电(一点没听)),趁周末赶紧补了几道题...
最小正子段和https://www.51nod.com/Challenge/Problem.html#problemId=1065
题意:找出一个子段加和为正且最小
思路:求出前缀和,用结构体存,然后由小到大排序, 假设排完后是 a0,a1, a2 ,如果a0.id<a1.id<a2.id,那么答案一定在a0.sum, (a1.sum-a0.sum), (a2.sum-a1.sum)中,如果不是顺序的, 此时答案一定没有a1.id因为a0与a1之间的区间差为负。枚举更新最小值即可
最大子矩阵和Redirect
题意:找出子矩阵元素和的最大值
思路:转化二维到一维,求每一列和,构成数组a,则最大子矩阵和对应于数组a的最大子矩阵和,枚举所有的情况,更新最大矩阵和即可
The Values You Can MakeCodeForces 687C - The Values You Can Make(01背包dp)_TianTengtt的博客-CSDN博客
题意:给定n个硬币每个硬币有a[i]的价值,问一个子集的和为x且这个子集存在与某个构成合为K的子集中。求这样的x有多少个
思路:与背包问题相似,加了个额外的状态,是否可以组成s,则:状态表示dp[i][j][p]为考虑到第i个数,当前所有数的和为j,组成和为p的子集是否可能。 如果不使用第i个数,dp[i][j][p]=dp[i-1][j][p] ;如果使用第i个数但子集不取,dp[i][j][p]=dp[i-1][j-ci][p] ;如果使用第i个数且子集取,dp[i][j][p]=dp[i-1][j-ci][p-ci]
丝绸之路丝绸之路 - 洛谷
题意:疲劳度=天气*城市距离,求M天内到达终点的疲劳度最小值
思路:状态表示 dp[i,j] 到第 i 个城市用了 j 天所需要的最小疲劳值,状态计算dp[i,j]=min(dp[i,j-1],dp[i-1,j-1]+d[i]*c[j])
回文字串[IOI2000] 回文字串 / [蓝桥杯 2016 省] 密码脱落 - 洛谷
题意:求最少插入几个字符使原字符串变成回文字串
思路:a串反转得到字串b,求ab的最长公共子序列,答案就是strlen-dp[n][n]
poj Dollar Days 3181
题意:从1到k中选任意多个数组成n,求共有几种选法
思路:完全背包问题,状态表示和状态划分两个方面思考。状态表示:f[i][j]表示用前j个数组成i的方法的数量;状态划分:一类是选第j个数f[i-j][j](选j,用来表示i-j),另一类不选第j个数f[i][j-1](不选j,用来表示i),状态转移方程:f[i][j]=f[i-j][j]+f[i][j-1]。初始化f[0][k]=1,因为需要用小状态表示大状态,所以需要优先更新i,i跑完一遍之后再更新j,表示用前1、2...k个数表示i++(1...n),直接双重循环表示f[j][i],每次循环有两种情况:1.j<i,直接f[j][i]=f[j][i-1],选不到i;2.j>=i,a[j][i]=a[j][i-1]+a[j-i][i]。这只是dp问题,该题还需要用高精度来做。
HDU-1141 Piggy-Bank
题意:n表示罐的质量,现有一个装了一些钱的罐子质量m,有t种规格不同的硬币,p[i],w[i]表示硬币的价值和它的重量,求罐子里最少的钱数
思路:完全背包问题,转化为求一定容量背包装最少价值的东西。初始化f[i][j]为inf,方便后面求可能的较小值,f[i][j]表示只考虑前i个物品,且总重量不大于j的所有选法的最小价值。状态转移方程f[i][j]=min(f[i-1][j],f[i-1][j-k*p[i]]+k*w[i]),用滚动数组优化后
for(i=0;i<t;i++){
for(j=w[i];j<=sum;j++){
f[j]=min(f[j],f[j-w[i]]+p[i]);
}
}
poj 3176
题意:n层的数字三角形,求从第一层到最后一层最大权值和
思路:状态表示f[i][j]表示第一层到第i层的最大权值和;输入f[i][j],遍历每一个数,更新其值为自身加上左上和右上中的最大值,f[i][j]+=max(f[i-1][j],f[i-1][j-1]),最后遍历一遍f[n][i]求最大值(比较最后一行的最大值)。
hdu1864(最大报销额 DP动态规划)
题意:从一堆发票中选出符合条件的发票进行报销,输出可以报销的最大数额。
思路:输入的时候注意只存储满足条件的,即单类金额超过600作废,总共金额超过1000作废,除了A,B,C三类还有其他类的作废,其他的满足条件的ABC三类看作一类进行01背包,找最大即可。状态转移方程:f[i][j] = max(f[i-1][j], f[i-1][j-v[i]] + w[i])。滚动数组:
for(int i = 0;i < l; i++){
for(int j = w;j >= a[i]; j--){
f[j] = max(f[j],f[j-a[i]] + a[i]);
}
}
还有一些题就放在excel表里了,背包问题主要是需要想到怎样去转化成背包模型,再根据一些题目的限制条件去修改。还是要多积累。