⛄一、脑肿瘤计算机辅助检测方法概述
尽管目前报道的脑肿瘤CAD检测方法有所不同, 但基本都遵循如下四个步骤: (1) MRI脑部图像的预处理。 预处理主要包括图像增强、 去噪、脑实质分割[4]及多模态MRI图像的配准等[5]。 (2) 感兴趣区域提取。为确保整个CAD系统的敏感性, 在提取感兴趣区域时应尽可能地把所有肿瘤都分割出来作为疑似肿瘤[6]。 (3) 特征提取及优化选择。 为进一步区分肿瘤和正常组织, 一定要从图像中提取一定数量和类型的特征, 这些特征将成为对疑似病灶进行分类的基础。 (4) 肿瘤的分类识别。 这一步的主要工作是设计分类器, 利用训练样本对分类器进行训练, 再对候选肿瘤进行分类。
1 图像的预处理
在脑肿瘤CAD系统研究中, 滤波通常是预处理的一个重要环节。 根据MRI图像的成像原理, 图像可能因磁场的不均匀性, 病人在成像过程中的移动等原因形成伪影和噪声[7]。 文献[7]通过中值滤波、均值滤波以及通过傅里叶变换后进行频域滤波等方式将伪影噪声等加以去除。
在医学图像处理中, 通常都要进行图像增强以增加正常组织与非正常组织的对比度, 常用的方法是直方图均衡化[5,7,8,9], 这是典型的空域图像增强算法, 能够较为快速地扩大图像的灰度范围。 但是对于噪声较大, 细节信息较多的医学图像, 直接使用这类方法会导致图像细节信息丢失, 而这些信息对于医学图像来说尤为重要。 文献[