⛄一、时间模式注意力机制的BiLSTM预测
1 BiLSTM原理结构
LSTM于1997年被提出,用于处理长时间序列问题,典型LSTM结构如图2所示。
图2中,xt表示时间序列的当前输入;Ct表示当前LSTM单元的细胞状态,通常只在LSTM内部流动,是LSTM的内部记忆;ht代表当前的编码隐藏状态向量;ft表示遗忘信息的程度;it表示输入信息的保留程度;C t表示当前状态的处理信息。ot表述输出信息的保留程度;tanh表示双曲正切函数。下标t-1代表上一个时刻的LSTM单元所对应的状态量。
LSTM单元有3道门,分别是遗忘门、输入门和输出门。遗忘门可以忘记一定比例的过去信息;输入门将部分当前时刻的输入信息记录进细胞状态;输出门将编码隐藏状态向量和细胞状态有选择性地作为下一个时刻LSTM单元的输入。
当前时刻的输出可能不仅与过去的信息有关,而且还与未来的信息有关。但LSTM无法编码从后向前的信息,而BiLSTM通过将时间序列反向,由正反向LSTM组成,可以更好地捕获双向序列的影响。BiL STM输出表达式为