【LSTM回归预测】TPA-LSTM时间注意力机制长短期记忆神经网络回归预测(多输入单输出)【含Matlab源码 1984期】

本文介绍了将时间模式注意力(TPA)机制与双向LSTM(BiLSTM)结合用于多输入单输出的风电功率预测。BiLSTM捕捉双向序列信息,TPA机制通过一维CNN抽取不同时间步的多变量依赖关系,提高了预测准确性。源代码使用Matlab实现。
摘要由CSDN通过智能技术生成

在这里插入图片描述

⛄一、时间模式注意力机制的BiLSTM预测

1 BiLSTM原理结构
LSTM于1997年被提出,用于处理长时间序列问题,典型LSTM结构如图2所示。

图2中,xt表示时间序列的当前输入;Ct表示当前LSTM单元的细胞状态,通常只在LSTM内部流动,是LSTM的内部记忆;ht代表当前的编码隐藏状态向量;ft表示遗忘信息的程度;it表示输入信息的保留程度;C t表示当前状态的处理信息。ot表述输出信息的保留程度;tanh表示双曲正切函数。下标t-1代表上一个时刻的LSTM单元所对应的状态量。

LSTM单元有3道门,分别是遗忘门、输入门和输出门。遗忘门可以忘记一定比例的过去信息;输入门将部分当前时刻的输入信息记录进细胞状态;输出门将编码隐藏状态向量和细胞状态有选择性地作为下一个时刻LSTM单元的输入。

当前时刻的输出可能不仅与过去的信息有关,而且还与未来的信息有关。但LSTM无法编码从后向前的信息,而BiLSTM通过将时间序列反向,由正反向LSTM组成,可以更好地捕获双向序列的影响。BiL STM输出表达式为

要在MATLAB中实现TPA-LSTM时间注意力机制长短期记忆神经网络)多输入输出,可以按照以下步骤进行操作: 1. 导入所需的MATLAB工具箱。首先,确保安装了Deep Learning Toolbox和Signal Processing Toolbox,这两个工具箱提供了实现神经网络和信号处理的功能。 2. 数据准备。准备输入数据和目标输出数据。例如,如果要对时间序列数据进行预测,则可以将多个时间步的输入数据作为网络的输入,并将预测的下一个时间步数据作为网络的输出。 3. 构建TPA-LSTM网络模型。使用MATLAB的深度学习工具箱,可以使用预定义的Layer函数和Network函数来构建神经网络模型。根据TPA-LSTM的结构,可以使用time-attention layer和LSTM layer构建网络。 4. 网络训练。使用准备的数据集对网络进行训练。可以使用MATLAB的trainNetwork函数来训练网络。在训练过程中,可以设置训练选项,例如训练周数、批处理大小和学习速率等。 5. 网络预测。训练完成后,可以使用训练好的网络模型对新的输入数据进行预测。可以使用MATLAB的predict函数对输入数据进行预测。 6. 评估性能。使用评价指标(例如均方根误差RMSE或平均绝对误差MAE)来评估网络的预测性能。可以使用MATLAB的评价函数来计算这些指标。 7. 调整网络结构和参数。根据实际需求,可以尝试调整TPA-LSTM网络的结构和训练参数,以提高网络性能和预测精度。 最后,要提醒的是,实现TPA-LSTM网络可能更复杂,需要对时间注意力机制LSTM层进行深入了解。为了更好地理解和实现该网络,建议参考相关的论文和文献资料,以便能够正确地实现和应用TPA-LSTM网络。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值