⛄一、海洋捕食算法优化卷积神经网络结合长短记忆网络MPA-CNN-LSTM风电功率预测
1 海洋捕食算法
海洋捕食算法(Marine Predators Algorithm,MPA)是一种受到海洋捕食行为启发的群体智能优化算法。它模拟了海洋生态系统中的捕食行为,通过个体之间的相互作用和信息交流来寻找最优解。
海洋捕食算法的基本原理是将问题转化为一组个体在搜索空间中的位置,这些个体被称为捕食者和猎物。捕食者根据自身适应度和周围猎物的信息选择最佳的位置,而猎物则根据自身适应度和周围捕食者的信息选择逃避或者被捕食的策略。
海洋捕食算法的主要步骤如下:
(1)初始化种群:随机生成一组捕食者和猎物个体,并为每个个体分配初始位置和速度。
(2)评估适应度:根据问题的优化目标,计算每个个体的适应度值。
(3)更新位置和速度:根据捕食者和猎物个体之间的相互作用和信息交流,更新每个个体的位置和速度。
(4)选择最优解:根据适应度值,选择出最优的解决方案作为当前的最优解。
(5)终止条件判断:判断是否满足终止条件,如果满足则结束算法,否则回到第3步继续迭代。
海洋捕食算法具有一定的全局搜
本文介绍了海洋捕食算法优化的卷积神经网络(CNN)结合长短记忆网络(LSTM)用于风电功率预测。算法通过初始化种群、评估适应度、更新位置和速度等步骤寻找最优解。文章详细讨论了CNN的结构,包括卷积层、池化层和全连接层,并解释了其在特征提取和分类中的作用。最后,提供了Matlab源代码和运行结果。
订阅专栏 解锁全文
110

被折叠的 条评论
为什么被折叠?



