1、获得模型的推理时间(或者说FPS)
python val.py --data coco.yaml --img 640 --weight runs/train/exp1/weights/best.pt --task speed --batch-size 1
pre-process:图像预处理时间,包括图像保持长宽比缩放和padding填充,通道变换(HWC->CHW)和升维处理等;inference:推理速度,指预处理之后的图像输入模型到模型输出结果的时间;NMS :你可以理解为后处理时间,对模型输出结果经行转换等;
FPS=1000ms除以这三个时间之和
2、获得模型的大小
要查看YOLO模型的大小和参数量,你可以使用相关的深度学习库和工具,比如TensorFlow、PyTorch或Darknet。
以下是一些常用的方法:
1. 使用Darknet(YOLO的原始实现)
Darknet是YOLO的原始实现,它提供了一个用于训练和测试YOLO模型的工具。
要查看YOLO模型的大小和参数量,你可以在Darknet目录下的命令行中输入以下命令:
./darknet detector calc_network yolov3.cfg yolov3.weights
这里yolov3.cfg是YOLOv3的配置文件,yolov3.weig