yolov5实战分析

本文介绍了如何在Python中使用不同工具和技术,如TensorFlow、PyTorch和Darknet,来测量YOLO模型的推理时间、图像预处理和后处理时间,以及获取模型的大小(参数量)。详细步骤包括执行NMS操作和通过代码计算模型的总参数数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、获得模型的推理时间(或者说FPS)

python val.py --data coco.yaml --img 640 --weight runs/train/exp1/weights/best.pt --task speed --batch-size 1

pre-process:图像预处理时间,包括图像保持长宽比缩放和padding填充,通道变换(HWC->CHW)和升维处理等;inference:推理速度,指预处理之后的图像输入模型到模型输出结果的时间;NMS :你可以理解为后处理时间,对模型输出结果经行转换等;
FPS=1000ms除以这三个时间之和

2、获得模型的大小

要查看YOLO模型的大小和参数量,你可以使用相关的深度学习库和工具,比如TensorFlow、PyTorch或Darknet。
以下是一些常用的方法:

1. 使用Darknet(YOLO的原始实现)
Darknet是YOLO的原始实现,它提供了一个用于训练和测试YOLO模型的工具。

要查看YOLO模型的大小和参数量,你可以在Darknet目录下的命令行中输入以下命令:

./darknet detector calc_network yolov3.cfg yolov3.weights


这里yolov3.cfg是YOLOv3的配置文件,yolov3.weig

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值