数据分析 | 朴素贝叶斯模型

本文深入探讨了朴素贝叶斯分类器的理论基础,包括贝叶斯公式和不同类型的朴素贝叶斯分类器,如高斯、多项式和伯努力。通过代码示例展示了如何在Python中使用sklearn库实现高斯和多项式朴素贝叶斯分类器,并对模型的性能进行了评估。
摘要由CSDN通过智能技术生成

一、贝叶斯理论

通过已知类别的训练数据集,计算样本的先验概率,然后利用贝叶斯概率公式测算未知类别样本属于某个类别的后验概率,最终以后验概率所对应的类别作为样本的预测值。

贝叶斯公式:
y = f ( X ) = P ( C i ∣ X ) = a r g m a x P ( C i ) P ( X ∣ C i ) ∑ i = 1 k P ( C i ) P ( X ∣ C i ) y=f(X)=P(C_i|X)=argmax\frac{P(C_i)P(X|C_i)}{\sum_{i=1}^kP(C_i)P(X|C_i)} y=f(X)=P(CiX)=argmaxi=1kP(Ci)P(XCi)P(Ci)P(XCi)
分母 P ( X ) = ∑ i = 1 k P ( C i ) P ( X ∣ C i ) P(X)=\sum_{i=1}^kP(C_i)P(X|C_i) P(X)=i=1kP(Ci)P(XCi) 是一个常量,它与样本属于哪个类别没有直接关系,所以计算 P ( C i ∣ X ) P(C_i|X) P(CiX)的最大值就是计算分子的最大值,即 a r g m a x   P ( C i ) P ( X ∣ C i ) argmax\ P(C_i)P(X|C_i) argmax P(Ci)P(XCi)

在大多数情况下, P ( C i ) P(C_i) P(Ci)是已知的,它以训练数据集中类别 C i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ouroboroszzs

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值