供应链-补货模型

上一篇文章,介绍了安全库存,在本片文章则讲解供应链-补货模型。

补货模型分有多种类型,大致上可以分为两类,定期补货模型和定量补货模型。

一、定量补货模型(R, S)

1. 模型逻辑
  • 触发条件:当库存水平降至再订货点(Reorder Point, R)时,立即触发补货。

  • 补货量:一般情况下,每次补货量为经济订单量(EOQ),也可以根据经验设定补货量和补货点,下述为以EOQ模型为例设计补货点与补货量的过程。

  • 公式

    • 再订货点 R = 提前期内的平均需求 × 提前期 + 安全库存

R=D×L+SS

             补货量 Q = EOQ(经济订单量,会在文章结尾对此模型讲解)

Q=\sqrt{2DS/H}

其中,D:年需求量,S:单次订货成本,H:单位库存持有成本。

2. 适用产品
  • 高价值物品:如电子元器件、医疗器械。

  • 需求稳定:需求波动较小,可预测性强的产品。

  • 缺货成本高:需严格控制缺货风险(如关键备件)。

3. 特点与优势
  • 实时监控:持续跟踪库存水平,响应迅速。

  • 低缺货风险:通过安全库存应对需求波动。

  • 成本优化:通过 EOQ 最小化总成本(订货成本 + 持有成本)。

4. 输入数据
  • 需求数据:历史需求均值与标准差。

  • 提前期(L):从下单到到货的时间。

  • 成本参数:订货成本(S)、持有成本(H)、缺货成本(若考虑服务水平)。

5. 输出数据
  • 再订货点(R)。

  • 经济补货量(Q)。

  • 安全库存(SS)水平。

6. 示例
  • 场景:某汽车零部件经销商销售某型号轴承,需求稳定。

  • 参数

    • 日均需求 D=10个,提前期 L=5天。

    • 年需求量 Dannual=3650,订货成本 S=100元/次,持有成本 H=2元/个/年。

    • 目标服务水平 95%(对应安全系数 Z=1.65Z=1.65),需求标准差 σ=2 个/天。

  • 计算

    • 安全库存 SS=Z\times \sigma \times \sqrt{L}=1.65\times2\times\sqrt{5}\approx7.4=1.65×2×5≈7.4 个

    • 再订货点 R=D×L+SS=10×5+7.4=57.4→ 58 个(取整)

    • 补货量 Q=2×3650×1002≈604个。

二、定期补货模型(T, S)

1. 模型逻辑
  • 触发条件:每隔固定周期 T 检查库存,补货至目标库存水平 S

  • 补货量:补货量 = 目标库存 S - 当前库存 - 在途库存。

  • 公式

    • 目标库存 S = 覆盖期内的平均需求 × (T + L) + 安全库存
      S=D×(T+L)+SS

2. 适用产品
  • 需求波动大:如季节性商品(服装、节日礼品)。

  • 多品类集中采购:如超市杂货,可降低管理复杂度。

  • 供应商协同:固定周期便于与供应商协调送货。

3. 特点与优势
  • 管理简单:固定时间检查,减少监控成本。

  • 批量采购折扣:适合集中采购场景。

  • 灵活应对需求波动:通过调整目标库存 S 适应变化。

4. 输入数据
  • 检查周期(T):如每周、每月。

  • 提前期(L)从下单到到货的时间。

  • 需求分布:覆盖期(T + L)内的需求均值和标准差。

5. 输出数据
  • 目标库存水平(S)。

  • 补货周期(T)。

  • 每次补货量(动态调整)。

6. 示例
  • 场景:某快消品零售商销售季节性饮料,需求波动较大。

  • 参数

    • 检查周期 T=7 天,提前期 L=3 天。

    • 覆盖期需求均值 D=100个/周,标准差σ=20 个。

    • 目标服务水平 90%(Z=1.28)。

  • 计算

    • 安全库存 SS=Z\times \sigma \times \sqrt{L}=1.28\times20\times\sqrt{10}\approx81个。

    • 目标库存 S=D×(T+L)+SS=100×10+81=1081个。

    • 若当前库存为 200 个,在途库存为 150 个,则补货量 = 1081 - 200 - 150 = 731 个

三、对比总结

维度定量补货模型(R, S)定期补货模型(T, S)
触发机制库存水平降至 R 时触发固定周期 T 触发
补货量固定(EOQ)动态(补至 S)
库存监控成本高(需实时监控)低(周期检查)
缺货风险低(实时响应)较高(依赖周期设置)
适用场景高价值、需求稳定、缺货成本高需求波动大、多品类、供应商协同
成本优化通过 EOQ 最小化总成本通过批量采购降低订货成本

四、选择建议

  1. 定量模型(R, S)

    • 适用于精细化管理场景,如关键备件、医疗物资。

    • 需确保需求预测准确性和实时库存监控能力。

  2. 定期模型(T, S)

    • 适用于需求波动大多品类集中采购场景,如零售、快消品。

    • 需合理设置检查周期 T 和目标库存 S,平衡服务水平与库存成本。

 通过以上分析,读者可清晰理解两种模型的差异及适用场景,为实际业务中的补货策略选择提供理论依据。

彩蛋

能看到这里的朋友,相信大家对于补货模型已经有了了解,现在为大家讲解一下经济订过货批量模型(EOQ)。

1. EOQ模型的原理

经济订货批量(EOQ) 是一种库存管理工具,用于确定企业每次采购货物的最佳数量。其核心原理是在订货成本和持有成本之间找到平衡,使得总成本最小化。

订货成本 是指企业每次下订单所产生的费用,包括采购部门的运营成本、与供应商沟通协商的成本、运输成本等。这些成本与订货次数直接相关,每次订货都会产生固定的费用,所以订货次数越多,订货成本越高。

持有成本 是指企业持有库存所产生的费用,包括仓储成本(如仓库租金、设备折旧、仓库管理人员工资等)、资金占用成本(库存占用资金的利息等)、库存损耗成本(如货物变质、过期等)。持有成本与库存水平直接相关,库存数量越多,持有成本越高。

总成本(TC) 是订货成本和持有成本之和。在年度总需求量一定的情况下,订货量和订货次数的关系如下:

  • 每次采购得越多,采购次数就越少,采购成本就越低,但持有成本就高。

  • 每次采购得越少,采购次数就越多,采购成本就越高,但持有成本就低。

 数学推导过程如下

其中,Q * 为经济订货批量;C为单次订货成本;R为年总需求量;P :货物单价 (元/件) ;F :每件存货的年保管费用占其价值的百分比;H=PF:单位产品的库存成本,即每件存货的年平均库存保管费用(元/件·年) 。

示意图如下图所示

 总结,经济订货批量模型就是帮你找到最小的总成本。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值