23北师大

真题

一、单项选择题(每题3分,共18分)

  1. 已知 P ( A ∩ B ) = P ( A ˉ ∩ B ˉ ) P(A\cap B) = P(\bar{A}\cap \bar{B}) P(AB)=P(AˉBˉ), 且 P ( A ) = p P(A)=p P(A)=p, 则 P ( B ) = ( ) P(B)=(\qquad) P(B)=().
    A. p p p
    B. 1 − p 1-p 1p
    C. 0 0 0
    D. 2 p 2p 2p

  2. 已知 X ∼ N ( 0 , 1 ) , Y X \sim N(0,1), Y XN(0,1),Y 以等概率取-1 和 1 , Z = X ⋅ Z , X 1, Z=X \cdot Z, X 1,Z=XZ,X Y Y Y 独立, 下列错误的是 ( ) (\qquad) ().
    A. Z Z Z 服从标准正态
    B. X , Z X, Z X,Z 不相关
    C. X , Z X, Z X,Z 不独立
    D. ( X , Z ) (X, Z) (X,Z) 服从二维正态

  3. X , Y X,Y X,Y 独立服从同一种分布(参数不一定相同), 且 X + Y X+Y X+Y 也服从这种名称的分布, 则 X , Y X,Y X,Y的分布不可能是 ( ) (\qquad ) ().
    A. 正态
    B. 二项
    C. 指数
    D. 泊松

  4. X ∼ N ( 0 , 1 ) X\sim N(0,1) XN(0,1), Y ∼ χ 2 ( m ) Y\sim \chi^2(m) Yχ2(m), Z ∼ χ 2 ( n ) Z\sim \chi^2(n) Zχ2(n), 则正确的说法是 ( ) (\qquad) ().
    A. X 2 ∼ χ 2 ( 1 ) X^2\sim \chi^2(1) X2χ2(1)
    B. X Y / m ∼ t ( m ) \frac{X}{\sqrt{Y/m}}\sim t(m) Y/m Xt(m)
    C. Y / m Z / n ∼ F ( m , n ) \frac{Y/m}{Z/n}\sim F(m,n) Z/nY/mF(m,n)
    D. 都对

  5. 有来自 P ( λ ) \mathcal{P}(\lambda) P(λ) 的 i.i.d. 样本 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn, 则 E ( n X ˉ 2 + S 2 ) = ( ) E(n\bar{X}^2+S^2)=(\qquad) E(nXˉ2+S2)=().
    A. 2 λ 2\lambda 2λ
    B. n λ 2 + λ n\lambda^2+\lambda nλ2+λ
    C. λ + ( n + 1 ) λ 2 \lambda+(n+1)\lambda^2 λ+(n+1)λ2
    D. 2 λ + n λ 2 2\lambda + n\lambda^2 2λ+nλ2

  6. 有来自 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) 的 i.i.d. 样本 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn, 记 S 1 2 S_1^2 S12 σ 2 \sigma^2 σ2 的MLE, S 2 2 S_2^2 S22 是样本方差, 则说法错误的是 ( ) (\qquad) ().
    A. S 2 2 S_2^2 S22 σ 2 \sigma^2 σ2 的MLE
    B. S 1 2 S_1^2 S12 的方差更小
    C. S 2 2 S_2^2 S22 σ 2 \sigma^2 σ2 的无偏估计
    D. S 2 S_2 S2 σ \sigma σ 的有偏估计

二、填空题(每题3分,共30分)

  1. 甲乙丙独立做题,做对概率分别是 1 / 3 , 1 / 4 , 1 / 5 1/3,1/4,1/5 1/3,1/4,1/5, 则至少有一人做对的概率是 ‾ \underline{\qquad} .

  2. 已知 ξ ∼ U ( 0 , 5 ) \xi\sim U(0,5) ξU(0,5), 则方程 4 x 2 + 4 ξ x + ( ξ + 2 ) = 0 4x^2+4\xi x+(\xi+2)=0 4x2+4ξx+(ξ+2)=0 有实根的概率是 ‾ \underline{\qquad} .

  3. 已知 X , Y , Z X,Y,Z X,Y,Z i.i.d. 服从 N ( 0 , 1 ) N(0,1) N(0,1), 则 E ( X 2 X 2 + Y 2 + Z 2 ) = ‾ E\left( \frac{X^2}{X^2+Y^2+Z^2} \right) =\underline{\qquad} E(X2+Y2+Z2X2)=.

  4. X ˉ , S 2 \bar{X},S^2 Xˉ,S2 是样本均值和样本方差, 而 X ˉ 2 − c S 2 \bar{X}^2-cS^2 Xˉ2cS2 是总体均值平方的无偏估计, 则 c = ‾ c=\underline{\qquad} c=.

  5. 已知 X , Y X,Y X,Y i.i.d. 服从 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2), 则 a X + b Y aX+bY aX+bY a X − b Y aX-bY aXbY 的相关系数是 ‾ \underline{\qquad} .

  6. 已知 X , Y X,Y X,Y 不相关, X ∼ B ( 1 , p 1 ) X\sim B(1,p_1) XB(1,p1), Y ∼ B ( 1 , p 2 ) Y\sim B(1,p_2) YB(1,p2), 则 E ( X 2 Y 2 ) = ‾ E(X^2Y^2)=\underline{\qquad} E(X2Y2)=.

  7. 某校学生身高近似服从标准差为 6 6 6 的正态分布, 对该校男生身高进行置信水 平为 95 % 95 \% 95% 的区间估计, 若要求误差 d 0 d_0 d0 不超过 1 , 则至少要调查的样本数为 ‾ \underline{\qquad} .

  8. X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn i.i.d. 服从 U ( 0 , 1 ) U(0,1) U(0,1), 则 E ( X ( n ) ) = ‾ E(X_{(n)})=\underline{\qquad} E(X(n))=.

  9. 某设备发送 A.B 两种信号, 概率为 1 : 2 1: 2 1:2, 发射 A 信号但误接收为 B 的概率 为 0.02 0.02 0.02, 发射 B \mathrm{B} B 信号对但接收为 A \mathrm{A} A 的概率为 0.01 0.01 0.01, 则在接收到 A \mathrm{A} A 信号时发射 A \mathrm{A} A 信号的概率为 ‾ \underline{\qquad} .

  10. 某一零件正常工作概率 0.95 0.95 0.95, 一个机器有 100 个零件, 至少 90 个零件正常 工作则机器可正常运作, 问机器正常运作的概率为 ‾ \underline{\qquad} .

三、分析计算题(共102分)

  1. (20分) 简述两种图示方法, 分析 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 是否为正态分布.

  2. (20分) 证明: 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 = 1 2 n ( n − 1 ) ∑ i = 1 n ∑ j = 1 n ( X i − X j ) 2 \frac{1}{n-1}\sum_{i=1}^n (X_i-\bar{X})^2=\frac{1}{2n(n-1)}\sum_{i=1}^n\sum_{j=1}^n(X_i-X_j)^2 n11i=1n(XiXˉ)2=2n(n1)1i=1nj=1n(XiXj)2, 并说明统计学意义.

  3. (20分) 有两组独立样本: X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn i.i.d. 服从 N ( μ 1 , σ 2 ) N(\mu_1,\sigma^2) N(μ1,σ2), Y 1 , ⋯   , Y m Y_1,\cdots,Y_m Y1,,Ym i.i.d. 服从 N ( μ 2 , σ 2 ) N(\mu_2,\sigma^2) N(μ2,σ2).
    (1) 求 μ 1 , μ 2 , σ 2 \mu_1,\mu_2,\sigma^2 μ1,μ2,σ2 的MLE.
    (2) 请构造 H 0 : μ 1 = μ 2 H_0:\mu_1=\mu_2 H0:μ1=μ2 的水平为 α \alpha α 的拒绝域(备择假设是其对立).
    (3) 请构造 H 0 : σ 2 = σ 0 2 H_0:\sigma^2=\sigma_0^2 H0:σ2=σ02 的水平为 α \alpha α 的拒绝域(备择假设是其对立).

  4. (20分) 已知 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn i.i.d. 来自总体 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2), 任意 i , j i,j i,j, C o r r ( X i , X j ) = ρ \mathrm{Corr}(X_i,X_j)=\rho Corr(Xi,Xj)=ρ.
    (1) 求 E ( ∣ X − μ ∣ ) E(|X-\mu|) E(Xμ);
    (2) 求 μ \mu μ 的矩估计;
    (3) 证明: ρ ≥ − 1 n − 1 \rho \ge -\frac{1}{n-1} ρn11.

  5. (12分) 设 F ( y 1 , y 2 , ⋯   , y d ) F(y_1,y_2,\cdots,y_d) F(y1,y2,,yd) ( Y 1 , ⋯   , Y d ) (Y_1,\cdots,Y_d) (Y1,,Yd) 的联合分布函数, 而 F i ( y i ) F_i(y_i) Fi(yi) 是边际分布. 证明:
    ∣ F ( x 1 , ⋯   , x d ) − F ( y 1 , ⋯   , y d ) ∣ ≤ ∑ i = 1 d ∣ F ( x i ) − F ( y i ) ∣ . \left| F\left( x_1,\cdots ,x_d \right) -F\left( y_1,\cdots ,y_d \right) \right|\le \sum_{i=1}^d{\left| F\left( x_i \right) -F\left( y_i \right) \right|}. F(x1,,xd)F(y1,,yd)i=1dF(xi)F(yi).
    先证 d = 2 d=2 d=2 时的情形, 再证明一般的情形.

  6. (10分) 一元线性回归: Y = β 0 + β 1 X + ε Y=\beta_0+\beta_1X+\varepsilon Y=β0+β1X+ε, Y ^ = β ^ 0 + β ^ 1 X \hat{Y}=\hat{\beta}_0+\hat{\beta}_1X Y^=β^0+β^1X, 其中 β ^ 0 , β ^ 1 \hat{\beta}_0,\hat{\beta}_1 β^0,β^1 是最小二乘估计. 证明皮尔逊相关系数的平方 r 2 r^2 r2 与拟合优度 R 2 R^2 R2 等价. 注意:
    r = ∑ ( X i − X ˉ ) ⋅ ( Y i − Y ˉ ) ∑ ( X i − X ˉ ) 2 ∑ ( Y i − Y ˉ ) 2 , R 2 = ∑ ( Y ^ i − Y ˉ ) 2 ∑ ( Y i − Y ˉ ) 2 . r=\frac{\sum\left(X_i-\bar{X}\right) \cdot\left(Y_i-\bar{Y}\right)}{\sqrt{\sum\left(X_i-\bar{X}\right)^2 \sum\left(Y_i-\bar{Y}\right)^2}},\quad R^2=\frac{\sum\left(\hat{Y}_i-\bar{Y}\right)^2}{\sum\left(Y_i-\bar{Y}\right)^2}. r=(XiXˉ)2(YiYˉ)2 (XiXˉ)(YiYˉ),R2=(YiYˉ)2(Y^iYˉ)2.

解析

一、单项选择题(每题3分,共18分)

  1. 已知 P ( A ∩ B ) = P ( A ˉ ∩ B ˉ ) P(A\cap B) = P(\bar{A}\cap \bar{B}) P(AB)=P(AˉBˉ), 且 P ( A ) = p P(A)=p P(A)=p, 则 P ( B ) = ( ) P(B)=(\qquad) P(B)=().
    A. p p p
    B. 1 − p 1-p 1p
    C. 0 0 0
    D. 2 p 2p 2p

Solution: 选 B.
利用德摩根公式, 有
P ( A B ) = P ( A ˉ B ˉ ) = 1 − P ( A ∪ B ) = 1 − P ( A ) − P ( B ) + P ( A B ) , P(AB) = P(\bar{A} \bar{B})=1-P(A\cup B)=1-P(A)-P(B)+P(AB), P(AB)=P(AˉBˉ)=1P(AB)=1P(A)P(B)+P(AB),
解得 P ( B ) = 1 − P ( A ) = 1 − p P(B)=1-P(A)=1-p P(B)=1P(A)=1p.

  1. 已知 X ∼ N ( 0 , 1 ) , Y X \sim N(0,1), Y XN(0,1),Y 以等概率取-1 和 1 , Z = X ⋅ Z , X 1, Z=X \cdot Z, X 1,Z=XZ,X Y Y Y 独立, 下列错误的是 ( ) (\qquad) ().
    A. Z Z Z 服从标准正态
    B. X , Z X, Z X,Z 不相关
    C. X , Z X, Z X,Z 不独立
    D. ( X , Z ) (X, Z) (X,Z) 服从二维正态

Solution: 选 D.

23考研模考题原题重现. 可以验证 Z ∼ N ( 0 , 1 ) Z\sim N(0,1) ZN(0,1), 且 C o v ( X , Z ) = E ( X Z ) = E ( X 2 Y ) = 0 Cov\left( X,Z \right) =E\left( XZ \right) =E\left( X^2Y \right) =0 Cov(X,Z)=E(XZ)=E(X2Y)=0, 但是
P ( X ≤ 1 , Z ≤ 1 ) = P ( X ≤ 1 , X Y ≤ 1 ) = P ( X ≤ 1 , Y = 1 ) + P ( − 1 ≤ X ≤ 1 , Y = − 1 ) = Φ ( 1 ) − 1 2 Φ ( − 1 ) , \begin{aligned} P\left( X\le 1,Z\le 1 \right) &=P\left( X\le 1,XY\le 1 \right)\\ &=P\left( X\le 1,Y=1 \right) +P\left( -1\le X\le 1,Y=-1 \right)\\ &=\Phi \left( 1 \right) -\frac{1}{2}\Phi \left( -1 \right) ,\\ \end{aligned} P(X1,Z1)=P(X1,XY1)=P(X1,Y=1)+P(1X1,Y=1)=Φ(1)21Φ(1),
不过 P ( X ≤ 1 ) P ( Z ≤ 1 ) = Φ 2 ( 1 ) P\left( X\le 1 \right) P\left( Z\le 1 \right) =\Phi ^2\left( 1 \right) P(X1)P(Z1)=Φ2(1), 它们不独立. 此外, 考虑 X = x X=x X=x 时, Z Z Z 只可能取 ± x \pm x ±x, 因此它们不是联合正态. 因为如果它们是联合正态, 那条件分布也会是正态.

  1. X , Y X,Y X,Y 独立服从同一种分布(参数不一定相同), 且 X + Y X+Y X+Y 也服从这种名称的分布, 则 X , Y X,Y X,Y的分布不可能是 ( ) (\qquad ) ().
    A. 正态
    B. 二项
    C. 指数
    D. 泊松

Solution: 选 C.
指数分布没有可加性, 即使它们参数一样时加在一起也是Gamma分布.

  1. X ∼ N ( 0 , 1 ) X\sim N(0,1) XN(0,1), Y ∼ χ 2 ( m ) Y\sim \chi^2(m) Yχ2(m), Z ∼ χ 2 ( n ) Z\sim \chi^2(n) Zχ2(n), 则正确的说法是 ( ) (\qquad) ().
    A. X 2 ∼ χ 2 ( 1 ) X^2\sim \chi^2(1) X2χ2(1)
    B. X Y / m ∼ t ( m ) \frac{X}{\sqrt{Y/m}}\sim t(m) Y/m Xt(m)
    C. Y / m Z / n ∼ F ( m , n ) \frac{Y/m}{Z/n}\sim F(m,n) Z/nY/mF(m,n)
    D. 都对

Solution: 选 A.
如果没有强调独立性, 则 B,C 都不一定对.

  1. 有来自 P ( λ ) \mathcal{P}(\lambda) P(λ) 的 i.i.d. 样本 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn, 则 E ( n X ˉ 2 + S 2 ) = ( ) E(n\bar{X}^2+S^2)=(\qquad) E(nXˉ2+S2)=().
    A. 2 λ 2\lambda 2λ
    B. n λ 2 + λ n\lambda^2+\lambda nλ2+λ
    C. λ + ( n + 1 ) λ 2 \lambda+(n+1)\lambda^2 λ+(n+1)λ2
    D. 2 λ + n λ 2 2\lambda + n\lambda^2 2λ+nλ2

Solution: 选 D.
E ( X ˉ 2 ) = λ 2 + λ n E(\bar{X}^2) = \lambda^2 + \frac{\lambda}{n} E(Xˉ2)=λ2+nλ, E ( S 2 ) = λ E(S^2)=\lambda E(S2)=λ, 因此有
E ( n X ˉ 2 + S 2 ) = n λ 2 + 2 λ . E(n\bar{X}^2+S^2) = n\lambda^2 + 2\lambda. E(nXˉ2+S2)=nλ2+2λ.

  1. 有来自 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) 的 i.i.d. 样本 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn, 记 S 1 2 S_1^2 S12 σ 2 \sigma^2 σ2 的MLE, S 2 2 S_2^2 S22 是样本方差, 则说法错误的是 ( ) (\qquad) ().
    A. S 2 2 S_2^2 S22 σ 2 \sigma^2 σ2 的MLE
    B. S 1 2 S_1^2 S12 的方差更小
    C. S 2 2 S_2^2 S22 σ 2 \sigma^2 σ2 的无偏估计
    D. S 2 S_2 S2 σ \sigma σ 的有偏估计

Solution: 选 A. 显然错误.

二、填空题(每题3分,共30分)

  1. 甲乙丙独立做题,做对概率分别是 1 / 3 , 1 / 4 , 1 / 5 1/3,1/4,1/5 1/3,1/4,1/5, 则至少有一人做对的概率是 ‾ \underline{\qquad} .

Solution: 3 5 \frac{3}{5} 53.
p = 1 − 2 3 ⋅ 3 4 ⋅ 4 5 = 3 5 . p=1-\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}=\frac{3}{5}. p=1324354=53.

  1. 已知 ξ ∼ U ( 0 , 5 ) \xi\sim U(0,5) ξU(0,5), 则方程 4 x 2 + 4 ξ x + ( ξ + 2 ) = 0 4x^2+4\xi x+(\xi+2)=0 4x2+4ξx+(ξ+2)=0 有实根的概率是 ‾ \underline{\qquad} .

Solution: 3 5 \frac{3}{5} 53.
判别式为 Δ = 16 ξ 2 − 16 ( ξ + 2 ) = 16 ( ξ 2 − ξ − 2 ) = 16 ( ξ + 1 ) ( ξ − 2 ) \Delta = 16\xi^2 -16(\xi+2)=16(\xi ^2-\xi-2)=16(\xi+1)(\xi-2) Δ=16ξ216(ξ+2)=16(ξ2ξ2)=16(ξ+1)(ξ2), 令其 ≥ 0 \ge 0 0, 解得
{ Δ ≥ 0 } = { ξ ≤ − 1 } ∪ { ξ ≥ 2 } , \{\Delta \ge 0\}= \{\xi\le -1\}\cup\{\xi\ge2\}, {Δ0}={ξ1}{ξ2},
P ( Δ ≥ 0 ) = P ( ξ ≥ 2 ) = 3 5 P(\Delta\ge 0)=P(\xi\ge 2)=\frac{3}{5} P(Δ0)=P(ξ2)=53.

  1. 已知 X , Y , Z X,Y,Z X,Y,Z i.i.d. 服从 N ( 0 , 1 ) N(0,1) N(0,1), 则 E ( X 2 X 2 + Y 2 + Z 2 ) = ‾ E\left( \frac{X^2}{X^2+Y^2+Z^2} \right) =\underline{\qquad} E(X2+Y2+Z2X2)=.

Solution: 1 3 \frac{1}{3} 31.

根据对称性, 有
E ( X 2 X 2 + Y 2 + Z 2 ) = E ( Y 2 X 2 + Y 2 + Z 2 ) = E ( Z 2 X 2 + Y 2 + Z 2 ) , E\left( \frac{X^2}{X^2+Y^2+Z^2} \right) = E\left( \frac{Y^2}{X^2+Y^2+Z^2} \right) = E\left( \frac{Z^2}{X^2+Y^2+Z^2} \right), E(X2+Y2+Z2X2)=E(X2+Y2+Z2Y2)=E(X2+Y2+Z2Z2),
三者相加又是 1 1 1, 故显然答案是 1 3 \frac{1}{3} 31.

  1. X ˉ , S 2 \bar{X},S^2 Xˉ,S2 是样本均值和样本方差, 而 X ˉ 2 − c S 2 \bar{X}^2-cS^2 Xˉ2cS2 是总体均值平方的无偏估计, 则 c = ‾ c=\underline{\qquad} c=.

Solution: 1 n \frac{1}{n} n1.

E ( X ˉ 2 ) = μ 2 + 1 n σ 2 E(\bar{X}^2)=\mu^2+\frac{1}{n}\sigma^2 E(Xˉ2)=μ2+n1σ2, E ( S 2 ) = σ 2 E(S^2)=\sigma^2 E(S2)=σ2, 因此 c = 1 n c=\frac{1}{n} c=n1.

  1. 已知 X , Y X,Y X,Y i.i.d. 服从 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2), 则 a X + b Y aX+bY aX+bY a X − b Y aX-bY aXbY 的相关系数是 ‾ \underline{\qquad} .

Solution: a 2 − b 2 a 2 + b 2 \frac{a^2-b^2}{a^2+b^2} a2+b2a2b2.

先求协方差, 有
C o v ( a X + b Y , a X − b Y ) = a 2 V a r ( X ) − b 2 V a r ( Y ) = ( a 2 − b 2 ) σ 2 , Cov(aX+bY,aX-bY)=a^2Var(X)-b^2Var(Y)=(a^2-b^2)\sigma^2, Cov(aX+bY,aXbY)=a2Var(X)b2Var(Y)=(a2b2)σ2,
同时再算方差, 有
V a r ( a X + b Y ) = V a r ( a X − b Y ) = ( a 2 + b 2 ) σ 2 , Var(aX+bY)=Var(aX-bY)=(a^2+b^2)\sigma^2, Var(aX+bY)=Var(aXbY)=(a2+b2)σ2,
故有 C o r r ( a X + b Y , a X − b Y ) = a 2 − b 2 a 2 + b 2 \mathrm{Corr}(aX+bY,aX-bY)=\frac{a^2-b^2}{a^2+b^2} Corr(aX+bY,aXbY)=a2+b2a2b2.

  1. 已知 X , Y X,Y X,Y 不相关, X ∼ B ( 1 , p 1 ) X\sim B(1,p_1) XB(1,p1), Y ∼ B ( 1 , p 2 ) Y\sim B(1,p_2) YB(1,p2), 则 E ( X 2 Y 2 ) = ‾ E(X^2Y^2)=\underline{\qquad} E(X2Y2)=.

Solution: p 1 p 2 p_1p_2 p1p2.

由于两点分布不相关与独立等价, 故
E ( X 2 Y 2 ) = E ( X 2 ) E ( Y 2 ) = p 1 p 2 . E(X^2Y^2)=E(X^2)E(Y^2)= p_1p_2. E(X2Y2)=E(X2)E(Y2)=p1p2.

  1. 某校学生身高近似服从标准差为 6 6 6 的正态分布, 对该校男生身高进行置信水 平为 95 % 95 \% 95% 的区间估计, 若要求误差 d 0 d_0 d0 不超过 1 , 则至少要调查的样本数为 ‾ \underline{\qquad} .

Solution: 139 139 139.

95 % 95\% 95% 置信区间为
[ x ˉ − 1.96 6 n , x ˉ + 1.96 6 n ] , \left[ \bar{x}-1.96\frac{6}{\sqrt{n}},\bar{x}+1.96\frac{6}{\sqrt{n}} \right] , [xˉ1.96n 6,xˉ+1.96n 6],
d 0 = 1.96 6 n ≤ 1 d_0=1.96\frac{6}{\sqrt{n}}\le 1 d0=1.96n 61, 解得 n ≥ 138.298 n \ge 138.298 n138.298.

  1. X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn i.i.d. 服从 U ( 0 , 1 ) U(0,1) U(0,1), 则 E ( X ( n ) ) = ‾ E(X_{(n)})=\underline{\qquad} E(X(n))=.

Solution: n n + 1 \frac{n}{n+1} n+1n.

利用结论: X ( n ) ∼ B e t a ( n , 1 ) X_{(n)}\sim Beta(n,1) X(n)Beta(n,1), 我们有 E ( X ( n ) ) = n n + 1 E(X_{(n)})=\frac{n}{n+1} E(X(n))=n+1n.

  1. 某设备发送 A.B 两种信号, 概率为 1 : 2 1: 2 1:2, 发射 A 信号但误接收为 B 的概率 为 0.02 0.02 0.02, 发射 B \mathrm{B} B 信号对但接收为 A \mathrm{A} A 的概率为 0.01 0.01 0.01, 则在接收到 A \mathrm{A} A 信号时发射 A \mathrm{A} A 信号的概率为 ‾ \underline{\qquad} .

Solution: 0.98 0.98 0.98.

由贝叶斯公式, 有
P ( i n : A ∣ o u t : A ) = 1 3 ⋅ 0.98 1 3 ⋅ 0.98 + 2 3 ⋅ 0.01 = 0.98. P\left( \mathrm{in}:A|\mathrm{out}:A \right) =\frac{\frac{1}{3}\cdot 0.98}{\frac{1}{3}\cdot 0.98+\frac{2}{3}\cdot 0.01}=0.98. P(in:Aout:A)=310.98+320.01310.98=0.98.

  1. 某一零件正常工作概率 0.95 0.95 0.95, 一个机器有 100 个零件, 至少 90 个零件正常 工作则机器可正常运作, 问机器正常运作的概率为 ‾ \underline{\qquad} .

Solution: Φ ( 2.524 ) \Phi \left( 2.524 \right) Φ(2.524).

设零件工作 X i = 1 X_i =1 Xi=1, 不工作 X i = 0 X_i=0 Xi=0, 则有 X i ∼ B ( 1 , 0.95 ) X_i\sim B(1,0.95) XiB(1,0.95), 因此有 Y = ∑ i = 1 100 X i ∼ A N ( 95 , 4.75 ) Y=\sum_{i=1}^{100} X_i \sim AN(95,4.75) Y=i=1100XiAN(95,4.75), 故有
P ( 正常 ) = P ( Y ≥ 90 ) = P ( Y > 89.5 ) = P ( Y − 95 4.75 > 89.5 − 95 4.75 ) = Φ ( 2.524 ) . P\left( \text{正常} \right) =P\left( Y\ge 90 \right) =P\left( Y>89.5 \right) =P\left( \frac{Y-95}{\sqrt{4.75}}>\frac{89.5-95}{\sqrt{4.75}} \right) =\Phi \left( 2.524 \right) . P(正常)=P(Y90)=P(Y>89.5)=P(4.75 Y95>4.75 89.595)=Φ(2.524).

三、分析计算题(共102分)

  1. (20分) 简述两种图示方法, 分析 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 是否为正态分布.

Solution: 可以用概率图(Probability-probability Plot,P-P图)、分位数图(Quantile-quantile Plot,Q-Q图)、直方图等来判断正态性。

P-P图是以样本的累计频率作为横坐标,以按照正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果数据服从正态分布,则样本点应该围绕第一象限的对角线分布。

Q-Q图则是以样本的分位数作为横坐标,以按照正态分布计算的相应分位数作为纵坐标,把样本表现为直角坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。

直方图指的是将数据以直方图的形式呈现,并将每个直方图顶部的中点连线,观察连线是否呈现中间高两边低且对称的钟形分布。

  1. (20分) 证明: 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 = 1 2 n ( n − 1 ) ∑ i = 1 n ∑ j = 1 n ( X i − X j ) 2 \frac{1}{n-1}\sum_{i=1}^n (X_i-\bar{X})^2=\frac{1}{2n(n-1)}\sum_{i=1}^n\sum_{j=1}^n(X_i-X_j)^2 n11i=1n(XiXˉ)2=2n(n1)1i=1nj=1n(XiXj)2, 并说明统计学意义.

Solution: 作恒等变形, 有
恒等变形.
T : = ∑ i = 1 n ∑ j = 1 n ( X i − X j ) 2 = ∑ i = 1 n ∑ j = 1 n ( X i 2 + X j 2 − 2 X i X j ) = ∑ i = 1 n ∑ j = 1 n ( X i 2 + X j 2 − 2 X i X j ) = ∑ i = 1 n ( n X i 2 + ∑ j = 1 n X j 2 − 2 n X i X ˉ ) = n ∑ i = 1 n X i 2 + n ∑ j = 1 n X j 2 − 2 n 2 X ˉ 2 = 2 n ( ∑ i = 1 n X i 2 − n X ˉ 2 ) , \begin{aligned} T:=\sum_{i=1}^n{\sum_{j=1}^n{\left( X_i-X_j \right) ^2}}&=\sum_{i=1}^n{\sum_{j=1}^n{\left( X_{i}^{2}+X_{j}^{2}-2X_iX_j \right)}}\\ &=\sum_{i=1}^n{\sum_{j=1}^n{\left( X_{i}^{2}+X_{j}^{2}-2X_iX_j \right)}}\\ &=\sum_{i=1}^n{\left( nX_{i}^{2}+\sum_{j=1}^n{X_{j}^{2}}-2nX_i\bar{X} \right)}\\ &=n\sum_{i=1}^n{X_{i}^{2}}+n\sum_{j=1}^n{X_{j}^{2}}-2n^2\bar{X}^2\\ &=2n\left( \sum_{i=1}^n{X_{i}^{2}-n\bar{X}^2} \right) ,\\ \end{aligned} T:=i=1nj=1n(XiXj)2=i=1nj=1n(Xi2+Xj22XiXj)=i=1nj=1n(Xi2+Xj22XiXj)=i=1n(nXi2+j=1nXj22nXiXˉ)=ni=1nXi2+nj=1nXj22n2Xˉ2=2n(i=1nXi2nXˉ2),
因此看出
T = ∑ i = 1 n X i 2 − n X ˉ 2 n − 1 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 = S 2 . T=\frac{\sum_{i=1}^n{X_{i}^{2}-n\bar{X}^2}}{n-1}=\frac{1}{n-1}\sum_{i=1}^n{\left( X_i-\bar{X} \right) ^2}=S^2. T=n1i=1nXi2nXˉ2=n11i=1n(XiXˉ)2=S2.

我们可以发现: S 2 S^2 S2 是样本方差,衡量数据的离散程度。而 T T T 是两两样本之间距离平方的平均值,同样衡量数据的离散程度。

  1. (20分) 有两组独立样本: X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn i.i.d. 服从 N ( μ 1 , σ 2 ) N(\mu_1,\sigma^2) N(μ1,σ2), Y 1 , ⋯   , Y m Y_1,\cdots,Y_m Y1,,Ym i.i.d. 服从 N ( μ 2 , σ 2 ) N(\mu_2,\sigma^2) N(μ2,σ2).
    (1) 求 μ 1 , μ 2 , σ 2 \mu_1,\mu_2,\sigma^2 μ1,μ2,σ2 的MLE.
    (2) 请构造 H 0 : μ 1 = μ 2 H_0:\mu_1=\mu_2 H0:μ1=μ2 的水平为 α \alpha α 的拒绝域(备择假设是其对立).
    (3) 请构造 H 0 : σ 2 = σ 0 2 H_0:\sigma^2=\sigma_0^2 H0:σ2=σ02 的水平为 α \alpha α 的拒绝域(备择假设是其对立).

Solution: (1) 写出似然函数
L ( μ 1 , μ 2 , σ 2 ) = ( 2 π σ 2 ) − m + n 2 exp ⁡ { − 1 2 σ 2 ( ∑ i = 1 n ( x i − μ 1 ) 2 + ∑ i = 1 m ( y i − μ 2 ) 2 ) } , L\left( \mu _1,\mu _2,\sigma ^2 \right) =\left( 2\pi \sigma ^2 \right) ^{-\frac{m+n}{2}}\exp \left\{ -\frac{1}{2\sigma ^2}\left( \sum_{i=1}^n{\left( x_i-\mu _1 \right) ^2}+\sum_{i=1}^m{\left( y_i-\mu _2 \right) ^2} \right) \right\} , L(μ1,μ2,σ2)=(2πσ2)2m+nexp{2σ21(i=1n(xiμ1)2+i=1m(yiμ2)2)},

对数似然函数是
ℓ ( μ 1 , μ 2 , σ 2 ) = A − m + n 2 ln ⁡ ( σ 2 ) − 1 2 σ 2 ( ∑ i = 1 n ( x i − μ 1 ) 2 + ∑ i = 1 m ( y i − μ 2 ) 2 ) . \ell \left( \mu _1,\mu _2,\sigma ^2 \right) =A-\frac{m+n}{2}\ln \left( \sigma ^2 \right) -\frac{1}{2\sigma ^2}\left( \sum_{i=1}^n{\left( x_i-\mu _1 \right) ^2}+\sum_{i=1}^m{\left( y_i-\mu _2 \right) ^2} \right). (μ1,μ2,σ2)=A2m+nln(σ2)2σ21(i=1n(xiμ1)2+i=1m(yiμ2)2).
求导置零解得
μ ^ 1 = x ˉ , μ ^ 2 = y ˉ , σ ^ 2 = 1 m + n ( ∑ i = 1 n ( x i − x ˉ ) 2 + ∑ i = 1 m ( y i − y ˉ ) 2 ) . \hat{\mu}_1=\bar{x},\quad \hat{\mu}_2 = \bar{y},\quad \hat{\sigma}^2=\frac{1}{m+n}\left( \sum_{i=1}^n{\left( x_i-\bar{x} \right) ^2}+\sum_{i=1}^m{\left( y_i-\bar{y} \right) ^2} \right) . μ^1=xˉ,μ^2=yˉ,σ^2=m+n1(i=1n(xixˉ)2+i=1m(yiyˉ)2).

(2) 由于
( x ˉ − y ˉ ) − ( μ 1 − μ 2 ) s w 1 n + 1 m ∼ t ( m + n − 2 ) , \frac{\left( \bar{x}-\bar{y} \right) -\left( \mu _1-\mu _2 \right)}{s_w\sqrt{\frac{1}{n}+\frac{1}{m}}}\sim t\left( m+n-2 \right) , swn1+m1 (xˉyˉ)(μ1μ2)t(m+n2),
其中 s w 2 s_w^2 sw2 是联合样本方差, 即
s w 2 = 1 m + n − 2 ( ∑ i = 1 n ( x i − x ˉ ) 2 + ∑ i = 1 m ( y i − y ˉ ) 2 ) , s_{w}^{2}=\frac{1}{m+n-2}\left( \sum_{i=1}^n{\left( x_i-\bar{x} \right) ^2}+\sum_{i=1}^m{\left( y_i-\bar{y} \right) ^2} \right), sw2=m+n21(i=1n(xixˉ)2+i=1m(yiyˉ)2),
故在原假设成立时有检验统计量 x ˉ − y ˉ s w 2 n ∼ t ( n − 2 ) \frac{\bar{x}-\bar{y}}{s_w\sqrt{\frac{2}{n}}} \sim t(n-2) swn2 xˉyˉt(n2), 故拒绝域是
W = { ∣ x ˉ − y ˉ s w 1 n + 1 m ∣ > t 1 − α 2 ( m + n − 2 ) } . W=\left\{ \left| \frac{\bar{x}-\bar{y}}{s_w\sqrt{\frac{1}{n}+\frac{1}{m}}} \right|>t_{1-\frac{\alpha}{2}}\left( m+n-2 \right) \right\} . W= swn1+m1 xˉyˉ >t12α(m+n2) .

(3) 利用 ( m + n − 2 ) s w 2 σ 2 ∼ χ ( m + n − 2 ) \frac{(m+n-2)s_w^2}{\sigma^2} \sim \chi^(m+n-2) σ2(m+n2)sw2χ(m+n2), 拒绝域是
W = { ( m + n − 2 ) s w 2 σ 0 2 < χ α 2 2 ( m + n − 2 ) } ∪ { ( m + n − 2 ) s w 2 σ 0 2 > χ 1 − α 2 2 ( m + n − 2 ) } . W=\left\{ \frac{\left( m+n-2 \right) s_{w}^{2}}{\sigma _{0}^{2}}<\chi _{\frac{\alpha}{2}}^{2}\left( m+n-2 \right) \right\} \cup \left\{ \frac{\left( m+n-2 \right) s_{w}^{2}}{\sigma _{0}^{2}}>\chi _{1-\frac{\alpha}{2}}^{2}\left( m+n-2 \right) \right\} . W={σ02(m+n2)sw2<χ2α2(m+n2)}{σ02(m+n2)sw2>χ12α2(m+n2)}.

  1. (20分) 已知 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn i.i.d. 来自总体 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2), 任意 i , j i,j i,j, C o r r ( X i , X j ) = ρ \mathrm{Corr}(X_i,X_j)=\rho Corr(Xi,Xj)=ρ.
    (1) 求 E ( ∣ X − μ ∣ ) E(|X-\mu|) E(Xμ);
    (2) 求 μ \mu μ 的矩估计;
    (3) 证明: ρ ≥ − 1 n − 1 \rho \ge -\frac{1}{n-1} ρn11.

Solution: (1) ∣ X − μ ∣ = σ ∣ Z ∣ |X-\mu|=\sigma |Z| Xμ=σZ, 其中 Z ∼ N ( 0 , 1 ) Z\sim N(0,1) ZN(0,1), 因此有
E ( ∣ Z ∣ ) = ∫ − ∞ + ∞ ∣ z ∣ 1 2 π e − z 2 2 d z = 2 π ∫ 0 + ∞ z e − z 2 2 d z = 2 π ∫ 0 + ∞ e − u d u = 2 π . E\left( |Z| \right) =\int_{-\infty}^{+\infty}{|z|\frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}dz}=\sqrt{\frac{2}{\pi}}\int_0^{+\infty}{ze^{-\frac{z^2}{2}}dz}=\sqrt{\frac{2}{\pi}}\int_0^{+\infty}{e^{-u}du}=\sqrt{\frac{2}{\pi}}. E(Z)=+z2π 1e2z2dz=π2 0+ze2z2dz=π2 0+eudu=π2 .
E ( ∣ X − μ ∣ ) = σ 2 π E(|X-\mu|)=\sigma \sqrt{\frac{2}{\pi}} E(Xμ)=σπ2 .

(2) 总体期望 E ( X ) = μ E(X) = \mu E(X)=μ, 由替换原理, μ ^ = x ˉ \hat{\mu}=\bar{x} μ^=xˉ.

(3) 茆书原题, 利用相关系数矩阵的非负定性, 有
∣ 1 ρ ⋯ ρ ρ 1 ⋯ ρ ⋮ ⋮ ⋮ ρ ρ ⋯ 1 ∣ = ∣ 1 + ( n − 1 ) ρ 1 + ( n − 1 ) ρ ⋯ 1 + ( n − 1 ) ρ ρ 1 ⋯ ρ ⋮ ⋮ ⋮ ρ ρ ⋯ 1 ∣ = [ 1 + ( n − 1 ) ρ ] ∣ 1 1 ⋯ 1 ρ 1 ⋯ ρ ⋮ ⋮ ⋮ ρ ρ ⋯ 1 ∣ = [ 1 + ( n − 1 ) ρ ] ∣ 1 0 ⋯ 0 ρ 1 − ρ ⋯ 0 ⋮ ⋮ ⋮ ρ 0 ⋯ 1 − ρ ∣ = [ 1 + ( n − 1 ) ρ ] ( 1 − ρ ) n − 1 . \begin{aligned} \left| \begin{matrix} 1& \rho& \cdots& \rho\\ \rho& 1& \cdots& \rho\\ \vdots& \vdots& & \vdots\\ \rho& \rho& \cdots& 1\\ \end{matrix} \right|&=\left| \begin{matrix} 1+\left( n-1 \right) \rho& 1+\left( n-1 \right) \rho& \cdots& 1+\left( n-1 \right) \rho\\ \rho& 1& \cdots& \rho\\ \vdots& \vdots& & \vdots\\ \rho& \rho& \cdots& 1\\ \end{matrix} \right|\\ &=\left[ 1+\left( n-1 \right) \rho \right] \left| \begin{matrix} 1& 1& \cdots& 1\\ \rho& 1& \cdots& \rho\\ \vdots& \vdots& & \vdots\\ \rho& \rho& \cdots& 1\\ \end{matrix} \right|\\ &=\left[ 1+\left( n-1 \right) \rho \right] \left| \begin{matrix} 1& 0& \cdots& 0\\ \rho& 1-\rho& \cdots& 0\\ \vdots& \vdots& & \vdots\\ \rho& 0& \cdots& 1-\rho\\ \end{matrix} \right|\\ &=\left[ 1+\left( n-1 \right) \rho \right] \left( 1-\rho \right) ^{n-1}.\\ \end{aligned} 1ρρρ1ρρρ1 = 1+(n1)ρρρ1+(n1)ρ1ρ1+(n1)ρρ1 =[1+(n1)ρ] 1ρρ11ρ1ρ1 =[1+(n1)ρ] 1ρρ01ρ0001ρ =[1+(n1)ρ](1ρ)n1.
如果 ρ = 1 \rho=1 ρ=1, 则相关系数矩阵的行列式为 0, 但也满足 ρ ≥ − 1 n − 1 \rho \ge -\frac{1}{n-1} ρn11. 如果 ρ < 1 \rho<1 ρ<1, 那么 ( 1 − ρ ) n − 1 > 0 (1-\rho)^{n-1}>0 (1ρ)n1>0, 因此非负定要求了 1 + ( n − 1 ) ρ ≥ 0 1+(n-1)\rho \ge 0 1+(n1)ρ0, 故 ρ ≥ − 1 n − 1 \rho\ge -\frac{1}{n-1} ρn11.

  1. (12分) 设 F ( y 1 , y 2 , ⋯   , y d ) F(y_1,y_2,\cdots,y_d) F(y1,y2,,yd) ( Y 1 , ⋯   , Y d ) (Y_1,\cdots,Y_d) (Y1,,Yd) 的联合分布函数, 而 F i ( y i ) F_i(y_i) Fi(yi) 是边际分布. 证明:
    ∣ F ( x 1 , ⋯   , x d ) − F ( y 1 , ⋯   , y d ) ∣ ≤ ∑ i = 1 d ∣ F ( x i ) − F ( y i ) ∣ . \left| F\left( x_1,\cdots ,x_d \right) -F\left( y_1,\cdots ,y_d \right) \right|\le \sum_{i=1}^d{\left| F\left( x_i \right) -F\left( y_i \right) \right|}. F(x1,,xd)F(y1,,yd)i=1dF(xi)F(yi).
    先证 d = 2 d=2 d=2 时的情形, 再证明一般的情形.

Solution: 这题23考研模考题押中原题. 先看 d = 2 d=2 d=2, 简记 x ∧ y = min ⁡ { x , y } x\land y =\min\{x,y\} xy=min{x,y}, x ∨ y = max ⁡ { x , y } x\lor y =\max\{x,y\} xy=max{x,y}, 放缩, 有
∣ F ( x 1 , x 2 ) − F ( y 1 , y 2 ) ∣ = ∣ F ( x 1 , x 2 ) − F ( y 1 , x 2 ) + F ( y 1 , x 2 ) − F ( y 1 , y 2 ) ∣ ≤ ∣ F ( x 1 , x 2 ) − F ( y 1 , x 2 ) ∣ + ∣ F ( y 1 , x 2 ) − F ( y 1 , y 2 ) ∣ = P ( x 1 ∧ y 1 < Y 1 ≤ x 1 ∨ y 1 , Y 2 ≤ x 2 ) + P ( Y 1 ≤ y 1 , x 2 ∧ y 2 < Y 1 ≤ x 2 ∨ y 2 ) ≤ P ( x 1 ∧ y 1 < Y 1 ≤ x 1 ∨ y 1 ) + P ( x 2 ∧ y 2 < Y 1 ≤ x 2 ∨ y 2 ) = ∣ F 1 ( x 1 ) − F 1 ( y 1 ) ∣ + ∣ F 2 ( x 2 ) − F 2 ( y 2 ) ∣ . \begin{aligned} \left| F\left( x_1,x_2 \right) -F\left( y_1,y_2 \right) \right|&=\left| F\left( x_1,x_2 \right) -F\left( y_1,x_2 \right) +F\left( y_1,x_2 \right) -F\left( y_1,y_2 \right) \right|\\ &\le \left| F\left( x_1,x_2 \right) -F\left( y_1,x_2 \right) \right|+\left| F\left( y_1,x_2 \right) -F\left( y_1,y_2 \right) \right|\\ &=P\left( x_1\land y_1<Y_1\le x_1\lor y_1,Y_2\le x_2 \right) +P\left( Y_1\le y_1,x_2\land y_2<Y_1\le x_2\lor y_2 \right)\\ &\le P\left( x_1\land y_1<Y_1\le x_1\lor y_1 \right) +P\left( x_2\land y_2<Y_1\le x_2\lor y_2 \right)\\ &=\left| F_1\left( x_1 \right) -F_1\left( y_1 \right) \right|+\left| F_2\left( x_2 \right) -F_2\left( y_2 \right) \right|.\\ \end{aligned} F(x1,x2)F(y1,y2)=F(x1,x2)F(y1,x2)+F(y1,x2)F(y1,y2)F(x1,x2)F(y1,x2)+F(y1,x2)F(y1,y2)=P(x1y1<Y1x1y1,Y2x2)+P(Y1y1,x2y2<Y1x2y2)P(x1y1<Y1x1y1)+P(x2y2<Y1x2y2)=F1(x1)F1(y1)+F2(x2)F2(y2).

而对于一般的 d d d, 有
∣ F ( x 1 , ⋯   , x d − 1 , x d ) − F ( y 1 , ⋯   , y d − 1 , y d ) ∣ = ∣ F ( x 1 , ⋯   , x d − 1 , x d ) − F ( y 1 , ⋯   , y d − 1 , x d ) + F ( y 1 , ⋯   , y d − 1 , x d ) − F ( y 1 , ⋯   , y d − 1 , y d ) ∣ ≤ ∣ F ( x 1 , ⋯   , x d − 1 , x d ) − F ( y 1 , ⋯   , y d − 1 , x d ) ∣ + ∣ F ( y 1 , ⋯   , y d − 1 , x d ) − F ( y 1 , ⋯   , y d − 1 , y d ) ∣ ≤ ∣ F 1 , d − 1 ( x 1 , ⋯   , x d − 1 ) − F 1 , d − 1 ( y 1 , ⋯   , y d − 1 ) ∣ + ∣ F d ( x d ) − F d ( y d ) ∣ , \begin{aligned} \left| F\left( x_1,\cdots ,x_{d-1},x_d \right) -F\left( y_1,\cdots ,y_{d-1},y_d \right) \right|&=\left| F\left( x_1,\cdots ,x_{d-1},x_d \right) -F\left( y_1,\cdots ,y_{d-1},x_d \right) +F\left( y_1,\cdots ,y_{d-1},x_d \right) -F\left( y_1,\cdots ,y_{d-1},y_d \right) \right|\\ &\le \left| F\left( x_1,\cdots ,x_{d-1},x_d \right) -F\left( y_1,\cdots ,y_{d-1},x_d \right) \right|+\left| F\left( y_1,\cdots ,y_{d-1},x_d \right) -F\left( y_1,\cdots ,y_{d-1},y_d \right) \right|\\ &\le \left| F_{1,d-1}\left( x_1,\cdots ,x_{d-1} \right) -F_{1,d-1}\left( y_1,\cdots ,y_{d-1} \right) \right|+\left| F_d\left( x_d \right) -F_d\left( y_d \right) \right|,\\ \end{aligned} F(x1,,xd1,xd)F(y1,,yd1,yd)=F(x1,,xd1,xd)F(y1,,yd1,xd)+F(y1,,yd1,xd)F(y1,,yd1,yd)F(x1,,xd1,xd)F(y1,,yd1,xd)+F(y1,,yd1,xd)F(y1,,yd1,yd)F1,d1(x1,,xd1)F1,d1(y1,,yd1)+Fd(xd)Fd(yd),
因此 d − 1 d-1 d1 时成立可推出 d d d 时成立, 用归纳假设可以说明对一般的 d d d 成立.

  1. (10分) 一元线性回归: Y = β 0 + β 1 X + ε Y=\beta_0+\beta_1X+\varepsilon Y=β0+β1X+ε, Y ^ = β ^ 0 + β ^ 1 X \hat{Y}=\hat{\beta}_0+\hat{\beta}_1X Y^=β^0+β^1X, 其中 β ^ 0 , β ^ 1 \hat{\beta}_0,\hat{\beta}_1 β^0,β^1 是最小二乘估计. 证明皮尔逊相关系数的平方 r 2 r^2 r2 与拟合优度 R 2 R^2 R2 等价. 注意:
    r = ∑ ( X i − X ˉ ) ⋅ ( Y i − Y ˉ ) ∑ ( X i − X ˉ ) 2 ∑ ( Y i − Y ˉ ) 2 , R 2 = ∑ ( Y ^ i − Y ˉ ) 2 ∑ ( Y i − Y ˉ ) 2 . r=\frac{\sum\left(X_i-\bar{X}\right) \cdot\left(Y_i-\bar{Y}\right)}{\sqrt{\sum\left(X_i-\bar{X}\right)^2 \sum\left(Y_i-\bar{Y}\right)^2}},\quad R^2=\frac{\sum\left(\hat{Y}_i-\bar{Y}\right)^2}{\sum\left(Y_i-\bar{Y}\right)^2}. r=(XiXˉ)2(YiYˉ)2 (XiXˉ)(YiYˉ),R2=(YiYˉ)2(Y^iYˉ)2.

Solution:
r 2 = l x y 2 l x x l y y = β ^ 1 2 l x x l y y = ∑ i = 1 n [ β ^ 1 ( X i − X ˉ ) ] 2 ∑ i = 1 n ( Y i − Y ˉ ) 2 = ∑ i = 1 n ( Y ^ i − Y ˉ ) 2 ∑ i = 1 n ( Y i − Y ˉ ) 2 = R 2 . r^2=\frac{l_{xy}^{2}}{l_{xx}l_{yy}}=\frac{\hat{\beta}_{1}^{2}l_{xx}}{l_{yy}}=\frac{\sum_{i=1}^n{\left[ \hat{\beta}_1\left( X_i-\bar{X} \right) \right] ^2}}{\sum_{i=1}^n{\left( Y_i-\bar{Y} \right) ^2}}=\frac{\sum_{i=1}^n{\left( \hat{Y}_i-\bar{Y} \right) ^2}}{\sum_{i=1}^n{\left( Y_i-\bar{Y} \right) ^2}}=R^2. r2=lxxlyylxy2=lyyβ^12lxx=i=1n(YiYˉ)2i=1n[β^1(XiXˉ)]2=i=1n(YiYˉ)2i=1n(Y^iYˉ)2=R2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值