23清华应统

这是一份清华大学统计学研究生入学考试的真题及解析,涵盖概率论与统计学的多个难点,包括概率密度函数求解、后验分布、无偏估计的条件、假设检验、最大似然估计等核心概念。
摘要由CSDN通过智能技术生成

真题

一、(20分) 已知 X X X 服从 f ( x ) = c e − x 2 ( 1 + e − x 2 ) 2 , − ∞ < x < ∞ f(x)=c \frac{e^{-\frac{x}{2}}} {(1+e^{-\frac{x}{2}})^2}, -\infty<x<\infty f(x)=c(1+e2x)2e2x,<x<.

(1) 求 c c c;
(2) 令 Y = X 3 Y=X^3 Y=X3,求 Y Y Y的密度函数.

二、(20分) 已知 X X X 的密度函数为 f ( x ; θ ) = 3 x 2 θ 3 , 0 < x < θ , f(x;\theta )=\frac{3x^2}{\theta ^3},0<x<\theta , f(x;θ)=θ33x2,0<x<θ,
其中 θ \theta θ 的先验分布是 U ( 0 , 1 ) U(0,1) U(0,1). 求后验分布 π ( θ ∣ X = x ) \pi(\theta\vert X=x) π(θX=x).

三、(20分) 证明: T T T θ \theta θ 的无偏估计, 则 T ( x ) T(x) T(x) θ \theta θ的UMVUE的充要条件是对任意零的无偏估计 U U U,都有 E [ T U ] = 0. E[TU]=0. E[TU]=0.

四、(20分) 设 X i ∼ N ( μ , σ 2 ) X_i\sim \mathcal{N}(\mu,\sigma^2) XiN(μ,σ2), i = 1 , 2 , . . . , n i=1,2,...,n i=1,2,...,n, 其中 σ \sigma σ已知. 求如下假设检验问题的UMPT, 若UMPT不存在, 请说明理由.
(1) H 0 : μ = μ 0 v.s. H 1 : μ = μ 1 < μ 0 H_0:\mu = \mu_0 \quad \text{v.s.} \quad H_1:\mu = \mu_1 < \mu_0 H0:μ=μ0v.s.H1:μ=μ1<μ0.
(2) H 0 : μ = μ 0 v.s. H 1 : μ ≠ μ 0 H_0:\mu = \mu_0\quad \text{v.s.}\quad H_1:\mu \neq \mu_0 H0:μ=μ0v.s.H1:μ=μ0.

五、(40分) X 1 , X 2 , . . . , X n ∼ P ( λ ) X_1,X_2,...,X_n\sim \mathcal{P}(\lambda) X1,X2,...,XnP(λ), 并且彼此独立.
(1)求 λ \lambda λ的最大似然估计 λ n ^ \hat{\lambda_n} λn^
(2)判断 λ ^ n + 1 n \hat{\lambda}_n+\frac{1}{\sqrt{n}} λ^n+n 1是否为 λ \lambda λ的相合估计.
(3)求 n ( λ ^ n − λ ) \sqrt{n}(\hat{\lambda}_n - \lambda) n (λ^nλ)的极限分布.
(4)求 n ( λ ^ n 2 − λ 2 ) \sqrt{n}(\hat{\lambda}_n^2 - \lambda^2) n (λ^n2λ2)的极限分布.

六、(30分) 有回归模型
y i = β x i + e i , 1 ≤ i ≤ n y_i = \beta x_i + e_i,\quad 1\leq i \leq n yi=βxi+ei,1in
1 ≤ i ≤ n 1 1 \leq i \leq n_1 1in1 时, e i ∼ N ( 0 , σ 1 2 ) e_i\sim \mathcal{N}(0,\sigma_1^2) eiN(0,σ12), 当 n 1 + 1 ≤ i ≤ n n_1+1\leq i \leq n n1+1in 时, e i ∼ N ( 0 , σ 2 2 ) e_i\sim \mathcal{N}(0,\sigma_2^2) eiN(0,σ22).
(1) 求 β \beta β 的最小二乘估计及其分布.
(2) 求 β \beta β 的最大似然估计及其分布, 比较其方差与最小二乘估计的方差.
(3) 若 e i e_i ei 的分布未知, 但已知其期望方差不变, 求 β \beta β 的无偏估计, 使其方差不大于 (1) 中估计量的方差.

解析

一、(20分) 已知 X X X 服从 f ( x ) = c e − x 2 ( 1 + e − x 2 ) 2 , − ∞ < x < ∞ f(x)=c \frac{e^{-\frac{x}{2}}} {(1+e^{-\frac{x}{2}})^2}, -\infty<x<\infty f(x)=c(1+e2x)2e2x,<x<.

(1) 求 c c c;
(2) 令 Y = X 3 Y=X^3 Y=X3,求 Y Y Y的密度函数.

Solution:

(1) 积分得 ∫ − ∞ ∞ e − x 2 ( 1 + e − x 2 ) 2 = 2 ∫ 0 ∞ d x ( 1 + x ) 2 = 2 , \int_{-\infty}^\infty \frac{e^{-\frac{x}{2}}} {(1+e^{-\frac{x}{2}})^2} = 2\int_0^\infty \frac{dx}{(1+x)^2} = 2, (1+e2x)2e2x=20(1+x)2dx=2,
由密度函数的正则性, c = 1 2 c=\frac{1}{2} c=21.

(2) 用微分法, ∀ y ∈ R \forall y\in \mathbb{R} yR, P ( Y = y ) = P ( X = y 1 3 ) = f ( y 1 3 ) ∣ d d y y 1 3 ∣ = 1 6 y − 2 3 e − y 1 3 2 ( 1 + e − y 1 3 2 ) 2 d y . P(Y=y)=P(X=y^{\frac{1}{3}})=f(y^{\frac{1}{3}})\left| \frac{d}{dy}y^{\frac{1}{3}} \right|=\frac{1}{6}\frac{y^{-\frac{2}{3}}e^{-\frac{y^{\frac{1}{3}}}{2}}}{(1+e^{-\frac{y^{\frac{1}{3}}}{2}})^2}dy. P(Y=y)=P(X=y31)=f(y31) dydy31 =61(1+e

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值