B站视频和用户互动:视频热榜、评论研究


B站视频和用户互动:视频热榜、评论研究

1. 背景

​ 在数字化和互联网的加速推进下,视频分享平台已经成为全球信息传播和社交互动的重要阵地。在中国,随着移动互联网的普及,B站(哔哩哔哩)、微博、抖音和快手等平台已成为年轻人日常生活的一部分,它们不仅仅是信息消费的场所,更是文化交流和社交互动的空间。

​ 平台各具特色:

  • B站以其独特的弹幕文化和二次元文化聚集地而闻名;
  • 微博作为实时的新闻和信息平台扮演着舆论监督的角色;
  • 而抖音和快手则以短视频和直播为主,快速捕捉年轻用户的注意力,成为流行文化的发源地。

​ 这些平台的共同特点是极高的用户参与度和社交互动性,用户可以通过评论、转发、点赞等方式参与内容的传播,形成了复杂的在线社交网络。

​ 本研究将重点分析B站,探讨其如何利用视频热榜、弹幕和评论等功能,促进用户之间的交流与互动,以及这些互动如何影响内容的流行度和社区的活跃度。通过与微博、抖音和快手的比较分析,我们旨在提出对于优化用户体验和内容策略的建议,以及如何在保持用户参与和满足的同时,有效管理和引导用户行为,促进健康网络文化的发展。

​ B站的内容涵盖了从动画、科技、娱乐、生活到学习教育等多个领域,吸引了大量的内容创作者和观众。研究B站的意义不仅在于分析其作为媒体的传播效应,更在于理解其背后的用户行为和社交结构。视频热榜如何影响内容的流行度、特定视频的弹幕和评论如何揭示用户情感、UP主与其粉丝之间的互动如何形成强大的社区力量,以及这些互动如何在更广泛的社交网络中扩散,都是当前互联网社会学和传媒学研究中的热点问题。通过深入分析B站的案例,本文将展示数字媒体时代下,一个视频平台如何通过技术和社交创新,成为青年文化的重要发源地和推动者。

2. 简介

​ 随着数字媒体的普及,研究人员对视频分享平台的用户行为、内容传播机制和社交网络结构的研究愈发深入。本文将综述相关的理论与实证研究,特别是关于B站、微博、抖音和快手等平台的社交互动和内容热度因素的研究。

2.1 用户行为与内容传播

​ 视频平台上的用户行为是多样化的,包括观看、评论、分享和创作内容等。学者们分析了用户如何通过这些行为与内容和其他用户互动,以及这些互动如何影响内容的传播和受众的扩大。例如,B站的弹幕文化增强了观众的参与感,使用户能在观看视频的同时实时交流,这种互动形式在抖音和快手的快速点赞和转发机制中也有所体现,但以更直观快速的方式出现。

2.3 影响力模型和内容热度

​ 影响力模型旨在解释和预测哪些内容能够成为热门,这些模型通常考虑多种因素,包括内容的情感倾向、主题相关性、以及发布时间等。研究发现,高度个性化和与观众情感共鸣的内容更容易获得高度关注。此外,内容的视觉呈现、互动设计(如弹幕和评论功能)也是影响内容热度的重要因素。

2.4 跨平台比较研究

​ 尽管B站、微博、抖音和快手各有特色,但它们之间的比较研究提供了关于如何通过不同的平台特性来优化内容策略和用户互动的洞见。例如,研究表明,虽然这些平台都采用了算法推荐系统,但每个平台的算法策略和用户反馈机制的设计都有细微的差异,这些差异影响了用户的行为模式和内容的流行度。

3. 研究方法

3.1 数据搜集

注意本文章抓取日期为2024年6月20日

​ 为了全面了解B站的视频热度、用户弹幕、评论行为及,本研究采用Python作为主要的数据抓取工具。通过编程自动化,我们从B站的多个数据源中收集了广泛的信息,具体包括:

  • 视频热榜信息:涵盖视频标题、UP主信息、发布时间、观看次数、点赞数、收藏数和评论数。这些数据用于分析视频流行度的影响因素及其变化趋势。由于篇幅原因,在正文中显示十条数据。
视频标题作者播放数弹幕数投币数点赞数分享数收藏数
自来也老师,这次,我来保护你!牙牙的包裹605529612375751567799440101792345732
《黑神话:悟空》耗时两年创作独立短片 | 直面天命一粒林宥嘉35656021013649886341976558407138886
《崩坏:星穹铁道》千星纪游PV:「此刻,在同一片星空下」崩坏星穹铁道1479008124491290282035695433653388
【毕导】打个赌,你说不出第二种蓝色的水果毕导87651141619714709941721520273101379
王妈大结局前传七颗猩猩QKXX3447013270014305235459331433835
咱就是说,当年我们做的比这个好看多了!何大爷课堂39944115203103384130220548209
爆肝400天,真实的璃月终于被我们还原了三国bigbig8886852365135149167704887658445
当你能够一刀砍出「爆炸伤害」?!脆骨症第七期!!马里奥红叔98878457397593519961768325683
【原神整活】这是我们最好的麻醉师罐罐小狗378845615121391683550109074180264
《明日方舟》EP - Chase the Light明日方舟8057265047622291296461883038083
  • 必刷榜单:

image-20240627014337731

image-20240627014419529

视频标题作者播放数弹幕数投币数点赞数分享数收藏数
回村三天,二舅治好了我的精神内耗衣戈猜想520471522688407169115601119724754842561474
破亿纪念!【猛男版】新宝岛 4K高清重置加强版猛男舞团IconX4406915712360715377472896872549440970033
【罗翔】我们为什么要读书?罗翔说刑法189382581616159090111289553314894702235
⚡️ 中 国 人 不 蹦 洋 迪 ⚡️钓可尔太曼3744820654620162872829428863381101166442
火柴人 VS 数学(Math)火柴人AlanBecker2957479489297171204521794025851631617558
一位粉丝想看到自己奔跑的样子影视飓风102290343073124360841739036171390601053
『从头看她』1920-2020,中国女性发型的百年变迁朵朵花林14173026191708635461586682104286454113
【广场往事】《妇仇者联盟》:枪在手,跟鹅走!导演小策1450263913616913059571227240327774348857
这才是文化膨胀!!当岩彩画遇上汉服莲羊的岩彩学堂7704636799840598070240739473245170
300天4万公里传遍中国,漂流相机终于回来了!-LKs-107583075821211903561408309172726503505
  • 弹幕数据:记录了弹幕的发送时间、具体内容以及发送者的信息(在隐私保护的前提下)。分析这些数据可以帮助我们了解观众的即时反应和情感态度。本文中的弹幕数据仅分析两个视频的弹幕信息

  • 评论信息:包括评论的详细内容、评论时间和评论者信息,以及评论的互动数据(如回复和点赞数量)。通过这部分数据,可以深入探讨观众对视频内容的深层反馈和讨论动态。

3.2 数据预处理

在数据搜集完成后,我们需要对原始数据进行预处理,以确保数据的质量和一致性,从而为后续的分析和模型构建奠定基础。在此之前,先展示部分用于数据搜集的爬虫代码。

3.2.1 数据抓取代码
视频热榜信息抓取代码
## 1 导入包
import pandas as pd
import requests  #发送请求
import time
url_dict = {i: f"https://api.bilibili.com/x/web-interface/popular/series/one?number={i}" for i in range(1, 273)}

headers = {

    "Cookie": "这里填写自己的Cookie",
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36"
}
all_data_df = pd.DataFrame()
for i in url_dict.items():
    url = i[1]  # url地址
    tab_name = i[0]  # tab页名称
    title_list = []
    play_cnt_list = []  # 播放数
    danmu_cnt_list = []  # 弹幕数
    coin_cnt_list = []  # 投币数
    like_cnt_list = []  # 点赞数
    share_cnt_list = []  # 分享数
    favorite_cnt_list = []  # 收藏数
    author_list = []

    video_url = []
    try:
        r = requests.get(url, headers=headers)
        print(r.status_code)
        #获取目标数据所在数据并转成字典类型
        json_data = r.json()
        list_data = json_data['data']['list']

        for data in list_data:
            title_list.append(data['title'])
            play_cnt_list.append(data['stat']['view'])
            danmu_cnt_list.append(data['stat']['danmaku'])
            coin_cnt_list.append(data['stat']['coin'])
            like_cnt_list.append(data['stat']['like'])
            # dislike_cnt_list.append(data['stat']['dislike'])
            share_cnt_list.append(data['stat']['share'])
            favorite_cnt_list.append(data['stat']['favorite'])
            author_list.append(data['owner']['name'])
            # score_list.append(data['score'])
            video_url.append('https://www.bilibili.com/video/' + data['bvid'])
            # print('*' * 10)
        print('第{}期爬取成功'.format(tab_name))
    except Exception as e:
        print("爬取失败:{}".format(str(e)))
    #创建dataframe保存数据
    df = pd.DataFrame(
        {'视频标题': title_list,
         '视频地址': video_url,
         '作者': author_list,
         '播放数': play_cnt_list,
         '弹幕数': danmu_cnt_list,
         '投币数': coin_cnt_list,
         '点赞数': like_cnt_list,
         '分享数': share_cnt_list,
         '收藏数': favorite_cnt_list,
          '期数':  tab_name ,
         })
    all_data_df = pd.concat([all_data_df, df], ignore_index=True)

    time.sleep(2)  # 每次爬取后暂停2秒,防止请求过于频繁
    #print(df.head())
    #将数据保存到本地
    # df.to_csv('第{}期.csv'.format(tab_name), index=False,encoding='utf_8_sig')  # utf_8_sig修复乱码问题
    # print('写入成功: ' + '第{}期.csv'.format(tab_name))

all_data_df.to_csv('总数据.csv', index=False, encoding='utf_8_sig')
print('所有数据写入成功: 总数据.csv')

弹幕数据抓取代码
# 导入数据请求模块 pip install requests
import requests
# 导入正则表达式模块
import re
"""发送请求 视频网页源代码中是存在 oid --> cid"""
headers = {

    "Cookie": "这里填写自己的cookie",
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36"
}
# url = 'https://api.bilibili.com/x/v1/dm/list.so?oid=1330002174'
url ='https://api.bilibili.com/x/v1/dm/list.so?oid=1567163859'
response = requests.get(url, headers=headers)
# 转码
response.encoding = 'utf-8'
"""获取数据"""
html_data = response.text
print(html_data)
"""解析数据
- re.findall('数据', '数据源') --> 找到所有数据
    从什么地方, 去匹配什么数据
"""
content_list = re.findall('<d p=".*?">(.*?)</d>', html_data)
# 列表合并成字符串
content = '\n'.join(content_list)
with open('弹幕.txt', mode='a', encoding='utf-8') as f:
    f.write(content)
    f.write('\n')
print(content)

评论信息抓取代码
# 导入数据请求模块 (需要安装 pip install requests)
import requests
# 导入csv模块 (不需要安装 内置模块)
import csv
# 导入哈希模块 (不需要安装 内置模块)
import hashlib
# 导入时间模块 (不需要安装 内置模块)
import time
from urllib.parse import quote
# 导入json模块
import json


def GetResponse(url, data):
    """定义发送请求函数: 模拟浏览器对于url地址发送请求
    - def 关键字 用于定义函数
    - GetResponse 自定义函数名
    - url / data 形式参数(名字自定义)
        后续调用 GetResponse 函数的时候, 需要传入两个参数 url(网址) data(查询参数)
    """
    # 模拟浏览器
    headers = {

        "Cookie": "填写自己的cookie",
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36"
    }
    # 发送请求
    response = requests.get(url=url, params=data, headers=headers)
    # 返回响应对象
    return response


def GetContent(date, NextPage, w_rid):
    print('获取数据参数:', NextPage)
    """获取评论数据内容"""
    # 请求网址
    link = 'https://api.bilibili.com/x/v2/reply/wbi/main'
    # 查询参数
    params = {
        # 'oid': '1852698584',
        'oid': '1955288088',
        'type': '1',
        'mode': '3',
        'pagination_str': '{"offset":%s}' % NextPage,
        'plat': '1',
        'web_location': '1315875',
        'w_rid': w_rid,
        'wts': date,
    }
    # 调用发送请求函数
    response = GetResponse(url=link, data=params)
    # 获取响应json数据内容
    JsonData = response.json()
    """解析数据: 提取我们需要的数据内容"""
    # 根据字典取值, 提取评论数据所在列表 replies
    replies = JsonData['data']['replies']
    # 定义空列表
    info_list = []
    # for循环遍历, 提取列表里面元素
    for index in replies:
        try:
            # 提取具体数据, 保存字典里面
            dit = {
                '昵称': index['member']['uname'],
                '性别': index['member']['sex'],
                '地区': index['reply_control']['location'].replace('IP属地:', ''),
                '评论': index['content']['message'],
            }
            print(dit)
            # 把字典添加到空列表中
            info_list.append(dit)
        except:
            pass
    # 获取下一页的参数内容
    next_offset = JsonData['data']['cursor']['pagination_reply']['next_offset']
    offset = json.dumps(next_offset)
    # 返回数据内容
    return info_list, offset


def Hash(date, NextPage):
    next_offset = '{"offset":%s}' % NextPage
    pagination_str = quote(next_offset)
    print('加密next_offset:', next_offset)
    print('加密pagination_str:', pagination_str)
    """获取w_rid值"""
    en = [
        "mode=3",
        # "oid=1852698584",
        "oid=1955288088",
        f"pagination_str={pagination_str}",
        "plat=1",
        "type=1",
        "web_location=1315875",
        f"wts={date}"
    ]
    Jt = '&'.join(en)
    string = Jt + "ea1db124af3c7062474693fa704f4ff8"
    MD5 = hashlib.md5()
    MD5.update(string.encode('utf-8'))
    w_rid = MD5.hexdigest()
    print(w_rid)
    return w_rid


if __name__ == '__main__':
    # 创建文件对象
    f = open('pvz.csv', mode='w', encoding='utf-8', newline='')
    # 字典写入方式
    csv_writer = csv.DictWriter(f, fieldnames=['昵称', '性别', '地区', '评论'])
    # 写入表头
    csv_writer.writeheader()
    # 定义第一页参数
    NextPage = '""'
    for page in range(1, 51):
        print(f'正在采集第{page}页的数据内容')
        # 获取当前时间戳
        date = int(time.time())
        # 获取加密参数
        w_rid = Hash(date=date, NextPage=NextPage)
        # 获取数据内容
        info_list, NextPage = GetContent(date, NextPage, w_rid)
        print(NextPage)
        # for循环遍历, 一条一条进行保存
        for info in info_list:
            # 写入数据
            csv_writer.writerow(info)
3.3 数据预处理

数据搜集完成后,我们需要对原始数据进行预处理,以确保数据的质量和一致性,从而为后续的分析和模型构建奠定基础。数据预处理的具体步骤如下:

3.3.1 数据清洗

数据清洗是数据预处理的首要步骤,主要包括以下几个方面:

  • 缺失值处理:在原始数据中,可能存在部分字段缺失的情况。对于缺失值较多的字段,我们会考虑删除该字段。对于少量缺失值,我们会使用合适的方法进行填补,如均值填补或前后值填补。
  • 重复数据删除:通过检查数据中的重复项,确保每条数据记录都是唯一的,以避免重复数据对分析结果造成偏差。
  • 异常值检测和处理:通过统计分析和可视化手段识别数据中的异常值,并根据具体情况进行处理,如删除异常值或进行适当的修正。
3.3.2 数据格式化

为了统一数据格式和方便后续分析,需要对数据进行格式化处理:

  • 时间格式转换:将视频发布时间、弹幕发送时间和评论时间统一转换为标准的时间格式(如YYYY-MM-DD HH:MM:SS),便于时间序列分析。
  • 数据类型转换:将观看次数、点赞数、收藏数、评论数、弹幕数等字段转换为数值类型,以便进行统计分析和建模。
3.3.3 数据整合

将从不同数据源获取的数据进行整合,确保各数据表之间的一致性和可关联性:

  • 视频信息整合:将视频热榜信息、弹幕数据和评论信息通过视频ID进行关联,形成完整的视频数据记录。
  • 用户信息整合:在隐私保护的前提下,将发送弹幕和发表评论的用户信息进行整合,分析用户行为。
3.3.4 特征工程

在进行数据分析和建模前,需要对数据进行特征工程,以提取更具代表性的特征:

  • 生成新特征:根据现有数据生成新的特征,如视频的互动率(点赞数、评论数、弹幕数与观看次数的比值)、用户活跃度(用户发送的弹幕和评论数量)等。
  • 特征选择:根据相关分析选择与研究问题最相关的特征,降低数据维度,提升模型性能和解释性。
3.4 数据分析方法

为了从所收集的数据中提取有价值的信息,本研究采用了一系列的统计和计算方法,包括情感分析、文本挖掘和社交网络分析。这些方法的详细描述如下:

  1. 情感分析

    • 目标:识别和分析用户在弹幕和评论中的情感倾向,了解用户对视频内容的情绪反应。
    • 方法:使用基于词典的方法和机器学习算法对弹幕和评论进行情感分类。具体来说,我们采用了Python库,通过预定义的情感词典和分类器,计算每条评论的情感得分。
    • 步骤
      1. 数据预处理:去除停用词、标点符号,进行分词处理。
      2. 情感评分:通过情感词典或预训练模型对每条数据进行评分,分类为积极、中性或消极情感。
      3. 结果汇总:统计不同情感类别的数据分布,分析情感趋势。

4. 可视化

4.1 视频热榜分析

根据b站必刷榜单信息

image-20240622020848330

image-20240627011141754

image-20240627011210855

image-20240627011245840

播放数 vs 点赞数

在这里插入图片描述

散点图和箱线图分析
  1. 散点图(播放数 vs 点赞数)
    • 播放数和点赞数呈现出正相关的趋势,播放数较高的视频往往获得更多的点赞。
    • 数据分布较为分散,表明播放数和点赞数之间虽有相关性,但不完全一致。
  2. 箱线图(各类数据分布情况)
    • 播放数、点赞数、弹幕数、投币数、分享数和收藏数的中位数较低,但存在许多离群值,说明这些数据分布不均衡。
    • 播放数和点赞数的分布跨度较大,反映出视频热度和用户互动的差异性。

image-20240627011735699

热力图分析结果
  • 播放数与点赞数、投币数、分享数、收藏数之间存在较强的正相关性。这表明播放数高的视频往往也会有更多的点赞、投币、分享和收藏。
  • 点赞数与投币数、分享数、收藏数之间也存在较强的正相关性,说明用户倾向于对喜欢的视频进行多种形式的支持和分享。
  • 弹幕数与其他数据的相关性相对较弱,表明弹幕数更多的是与视频内容的互动性质有关,而非单纯的视频热度。
总结与建议
  1. 播放数驱动:提升视频的播放数可以显著增加点赞、投币、分享和收藏等多方面的互动。
  2. 多渠道互动:除了关注播放数,还应鼓励用户进行点赞、投币、分享和收藏,形成多渠道互动,提升视频的综合热度。
  3. 内容互动性:增加视频的互动性内容,如提问、引导弹幕互动等,可以提升弹幕数,从而增加用户粘性。

image-20240627011840385

image-20240627011920926

进一步分析结果
  1. 前20个视频的播放数对比:数据显示,播放数最高的视频显著高于其他视频,可能是由于视频内容的受欢迎程度或推广力度不同导致。
  2. 前20个视频的点赞数对比:点赞数的分布情况也表现出类似的趋势,点赞数最高的视频远高于其他视频。
建议
  1. 热门内容分析:对播放数和点赞数较高的视频内容进行深入分析,了解其成功的原因,例如视频的主题、创意、制作质量等,作为未来视频制作的参考。
  2. 推广策略:继续强化和优化推广策略,特别是对那些潜力较大的视频,通过社交媒体、社区互动等多渠道推广,提升视频的曝光度。
  3. 用户互动:增加与观众的互动,鼓励用户点赞、评论和分享,提升视频的互动性和用户参与度。
  4. 多样化内容:在保持热门内容的基础上,尝试多样化的视频内容,满足不同观众的需求,吸引更多的观众群体。

b站第272期周刊:

image-20240622050700996

此为总榜信息可视化的一部分,

4.1.1数据总结
  • 视频播放量:榜单中的视频播放量差异较大,从770万到5.2亿不等。最高播放量的视频是“回村三天,二舅治好了我的精神内耗”,达到了5204万次。
  • 互动数据
    • 弹幕数:弹幕数最高的是“回村三天,二舅治好了我的精神内耗”,达到了268840条,最低的是“这才是文化膨胀!!当岩彩画遇上汉服”,为7998条。
    • 投币数:投币数最高的视频是“一位粉丝想看到自己奔跑的样子”,达到了2436084个。
    • 点赞数:点赞数最高的视频是“回村三天,二舅治好了我的精神内耗”,达到了6011197个。
    • 分享数:分享数最高的视频是“回村三天,二舅治好了我的精神内耗”,达到了2475484次。
    • 收藏数:收藏数最高的视频是“回村三天,二舅治好了我的精神内耗”,达到了2561474个。
4.1.2 结论和观察

​ B站时隔两年终于更新了“入战必刷”视频榜单,这次入选的视频数量达到了98个。尽管数量略显不足,但“入战必刷”作为B站视频的最高荣誉和门面,依然代表了平台上最具创意和影响力的视频作品。通过对这98个视频的数据进行统计和分析,我们可以得出以下结论:

播放量分析
  • 播放量最高:播放量最高的视频是“鬼书念尸之王赵本山。只有一动”,达到了1.1亿次。
  • 鬼畜视频影响力:播放量最高的前四个视频均为鬼畜内容,前七有六个是鬼畜,前十一有八个是鬼畜。
  • 播放量范围
    • 破1000万的视频有64个。
    • 破5000万的视频有9个。
    • 最低播放量的视频是“拜年纪、合唱only my 哔哩哔哩”,为216万次。
视频长度分析
  • 最长视频:“73分钟看完柯南所有剧情”,时长为73分59秒。
  • 最短视频:“危险的黑子”,时长为1分32秒。
  • 平均时长:所有视频的平均时长是8分17秒。
互动数据分析
  • 点赞王:“回村三天,二舅治好了我的精神内耗”,590万次点赞,UP主为“衣戈猜想”。
  • 投币王:“回村三天,二舅治好了我的精神内耗”,706.6万次投币。
  • 收藏王:“派大星的独白,一个关于正常人的故事”,345.2万次收藏,UP主为“洛恩阿特金森”。
  • 转发王:“回村三天,二舅治好了我的精神内耗”,245.6万次转发。
  • 弹幕王:“散人大型励志剧娱乐圈小助理养成计划”,339万条弹幕,UP主为“逍遥散人”。
  • 单个视频弹幕王:“预伴妹情”,视频为“炮姐ANV我永远都会守护在你的身边”,146.6万条弹幕,UP主为“爱猫的祝福”。
  • 评论王:“东方bad apple PV映会”,52万条评论,UP主为“折射”。
互动数据概率分析
  • 点赞率之王:“一位粉丝想看到自己奔跑的样子”,点赞率为17.41%,UP主为“影视俱风”。
  • 收藏率之王:“2021年清华美院动画壁设段华境,百年党庆献立中华”,收藏率为8.84%,UP主为“敢稿人”。
  • 转发率之王:“回村三天,二舅治好了我的精神内耗”,转发率为4.87%。
UP主分析
  • 粉丝量较少的UP主
    • 不满一万粉丝的有四位。
    • 不满十万粉丝的有19位。
    • 最少粉丝量UP主:一个名字是日语的UP主,只有4036个粉丝。
  • 多次入选的UP主
    • 才书学浅的裁浅(两次入选)。
    • 何同学(两次入选)。
    • papi酱(三次入选)。
区域分布分析
  • 鬼畜区:入选视频最多,共有23个。但在最新更新的13个视频中只有一个鬼畜视频。
平均数据
指标数值
UP主粉丝数289.17万
视频时长8分17秒
平均播放量2048万次
平均点赞数107万
平均投币数96.49万
平均收藏数63.79万
平均转发数22.84万
平均评论数55552条
平均弹幕数20.05万条

​ 通过这些数据分析,我们发现B站“入战必刷”不仅是对视频质量和创意的认可,更是对UP主创作能力和用户互动的高度肯定。“入战必刷”的变化和发展反映了B站从一个小众社区成长为一个具有广泛影响力的文化平台的历程。B站通过设立“入战必刷”传达了技术力、创意、社会认同、人文张力和社会影响力等多重标准,标志着平台逐步走向成熟。

4.2 弹幕和评论分析

视频截图:

Image 1
Image 2 Image 3
Image 1
Image 1 Image 2
  1. 整体积极反馈:大多数观众对视频持积极态度,其中“喜欢”和“支持”的评论占比合计达到68.88%。这表明观众普遍对该视频表现出较高的满意度和认可度。

  2. 中立态度:约10.94%的评论者对视频持中立态度,表明有一部分观众对视频的看法较为中性,既不特别喜欢也不特别反对。

  3. 负面反馈:约20.18%的评论表达了负面情感,包括“消极”和“不支持”的评论。这表明尽管大多数评论是积极的,但仍有一些观众对视频不太满意。

  4. 少量明确反对:仅9.64%的评论明确表示不支持,这说明明确表达反对意见的观众比例相对较小。

​ 总结来看,“植物大战僵尸杂交版”视频总体上获得了观众的积极反馈,绝大多数评论者对视频表示喜欢或支持,负面评论比例较低,明确反对的评论最少。这些数据表明该视频在观众中有着较好的反响和受欢迎程度。由于该视频突然流行起来,,所以就做了一期关于这个的视频。

5. 局限性与未来研究方向

5.1 局限性
  1. 评论数据的局限:由于B站平台的限制,本研究在爬取样本视频的评论数据时,只选取了部分评论数据,而不是全部评论。这可能导致所获得的数据无法全面反映用户的全部反馈和互动情况,存在一定的数据偏差。

  2. 社交网络数据的局限:在构建社交网络时,由于选取的两位UP主数据量过大,本研究仅选取了部分粉丝的粉丝进行了数据可视化。这一抽样方法可能无法完全呈现B站社交网络的复杂结构和全面情况,限制了对用户互动模式的深入分析。后续或许可采用GNN进行进一步探讨。

5.2 未来研究方向
  1. 扩展评论数据的获取:未来研究可以尝试开发更加高效的爬虫工具,或者利用B站提供的API接口,获取更多视频的全部评论数据。这样可以更全面地分析用户的互动和反馈,从而得出更准确的结论。
  2. 多样化的数据来源:可以考虑引入更多数据来源,如用户观看历史、点赞和收藏记录等,结合评论和弹幕数据,进行多维度的用户行为分析。这将有助于更全面地理解用户的兴趣和偏好。
  3. 动态变化的跟踪研究:未来研究可以设计长期的动态跟踪研究,定期爬取和分析B站数据,以观察用户行为和社交网络的动态变化。这将有助于理解用户互动和传播模式的长期趋势和变化规律。
  4. 跨平台比较研究:可以将B站的数据与其他视频平台(如YouTube、抖音等)进行比较研究,分析不同平台上的用户行为和社交网络特点,探讨平台特性对用户互动和传播的影响。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值