第十课:数学知识(筛法找质数、约数相关、欧拉函数)

目录

一、质数

(1)试除法判断质数

(2)分解质因数

 (3)筛法求质数

埃式筛法

线筛法(时间复杂度线性)

二、约数(求约数、和、积、最大公约数)

(1)试除法求约数

(2)约数个数

(3)约数之和

 (4)最大公约数(欧几里得算法)

三、欧拉函数

(1)定义及常规求法

(2)线筛法求欧拉函数


一、质数

(1)试除法判断质数

        试除法,即对一个数n,从2到\sqrt n,判断能否整除n。若有一个数能,则n为合数,若都不能,为质数。注意为了不要超出int表达范围,写成i\leqslant \frac{x}{i}

//这里填你的代码^^
#include <iostream>
#include <algorithm>

using namespace std;

bool is_prime(int x)
{
    if (x < 2) return false;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
            return false;
    return true;
}

int main()
{
    int n;
    cin >> n;

    while (n -- )
    {
        int x;
        cin >> x;
        if (is_prime(x)) puts("Yes");
        else puts("No");
    }

    return 0;
}


//注意代码要放在两组三个点之间,才可以正确显示代码高亮哦~

作者:yankai
链接:https://www.acwing.com/activity/content/code/content/3740017/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

(2)分解质因数

        将一个数N分解为如下形式:

N=p_{1}^ {a_{1}}p_{2}^{a_{2}}....p_{k}^{a_{k}}

 即可令i从2到\sqrt n,判断能否整除N,若能,则不断让N除以i,求出i的次数。

注意:(1)若n能整除i,则i一定是一个质数。因为若是i合数,则必能拆成两个因子,这些因子在先前已被遍历到,即此时N不能被这些因子整除,自然也不能被i整除。

           (2)可能会有一个大于\sqrt n的质因子,在分解完之前的质因子后,N的值就是这个剩下的质因子。因此循环遍历到\sqrt n即可,但最后要加上判断。

//这里填你的代码^^
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;

void divide(int n)
{
    for(int i=2;i<=n/i;i++)//大于根号n的质数最多有一个,所以这里枚举到根号n
        if(n%i==0)//i必定是个质数
        {
            int s=0;
            while(n%i==0)
            {
                n/=i;
                s++;
            }
            printf("%d %d\n",i,s);
        }

    if(n>1) printf("%d %d\n",n,1);//此时n就是大于根号n的那个质数

    puts("");

}

int main()
{
    int n;
    cin>>n;
    while(n--)
    {
        int x;
        cin>>x;
        divide(x);
    }
    return 0;
}
//注意代码要放在两组三个点之间,才可以正确显示代码高亮哦~

作者:yankai
链接:https://www.acwing.com/activity/content/code/content/3740285/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

 (3)筛法求质数

埃式筛法

        即每遍历到一个没有被筛去的数,就把它的倍数筛去。同时可以注意到这个没有被筛去的数一定是个质数,如此操作遍历整个集合,剩下的数就是质数(每一个合数已经被它的某一个质因子筛掉了)。

//这里填你的代码^^
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N =1e6;
int primes[N],cnt;
bool st[N];

void get_primes(int n)
{
    for(int i=2;i<=n;i++)
        if(!st[i])
        {
            primes[cnt++]=i;
            for(int j=i+i;j<=n;j+=i)
                st[j]=true;
        }
}

int main()
{
    int n;
    cin>>n;
    get_primes(n);
    cout<<cnt<<endl;
    return 0;
}
//注意代码要放在两组三个点之间,才可以正确显示代码高亮哦~

作者:yankai
链接:https://www.acwing.com/activity/content/code/content/3743520/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

线筛法(时间复杂度线性)

        核心:每个数(primes[j]*i)只用它的最小质因子来筛去。每个数只有一个最小质因子,因此每个数只需要被筛一次,因此是线性的。

分析:(1)若循环内i%primes[j]==0,则primes[j]是i的最小质因子,同时也是primes[j]*i的最小质因子。

(2)若循环内i%primes[j]!=0,则primes[j]一定小于i的所有质因子,则primes[j]*j的最小质因子也是primes[j]。

(3)每一个合数都能被删去:对于任意一个合数x,都能找到其最小质因子primes[j],当循环遍历到primes[j]时,x就会被primes[j]*i筛去。

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N =1e6;
int primes[N],cnt;
bool st[N];

void get_primes(int n)
{
    for(int i=2;i<=n;i++)
    {
        if(!st[i])  primes[cnt++]=i;
        for(int j=0;primes[j]<=n/i;j++)
        {
            st[primes[j]*i]=true;
            if(i%primes[j]==0) break;
        }
    }
}

int main()
{
    int n;
    cin>>n;
    get_primes(n);
    cout<<cnt<<endl;
    return 0;
}

作者:yankai
链接:https://www.acwing.com/activity/content/code/content/3743520/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

二、约数(求约数、和、积、最大公约数)

(1)试除法求约数

求得一个数x的一个约数i,则x/i也是x的一个约数。遍历到\sqrt x即可得x的所有约数(注意若约数i恰好是根号x,则不需再将x/i也加入约数集合中)

//这里填你的代码^^
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;

vector<int> get_divisors(int x)
{
    vector<int> res;
    for(int i=1;i<=x/i;i++)
        if(x%i==0)
        {
            res.push_back(i);
            if(i!=x/i) res.push_back(x/i);
        }
    sort(res.begin(),res.end());
    return res;
}

int main()
{
    int n;
    cin>>n;
    while(n--)
    {
        int x;
        cin>>x;
        auto res=get_divisors(x);
        for(auto x:res) cout<<x<<" ";
        cout<<endl;
    }
    return 0;

}
//注意代码要放在两组三个点之间,才可以正确显示代码高亮哦~

作者:yankai
链接:https://www.acwing.com/activity/content/code/content/3744545/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

(2)约数个数

首先介绍一个数N的约数个数的公式:

对于一个数N,一定能够将N写成:

N=p_{1}^{a_{1}}p_{2}^{a_{2}}p_{3}^{a_{3}}...p_{n}^{a_{n}}

同样的我们可以设d为N的一个约数,可以把d写成

d=p_{1}^{b_{1}}p_{2}^{b_{2}}....p_{n}^{b_{n}}

其中易知,对于d中因子的次方b_{k}可取0\leqslant b_{k}\leqslant a_{k},即对于每一个因子次数,都用a_{k}+1 种取法。则可知d的取值有(a_{1}+1)(a_{2}+1)(a_{3}+1)...(a_{n}+1)种,即为约数个数。

其中,要求因子拆分至不可拆分,即要求因子为质因子。

//这里填你的代码^^
#include<iostream>
#include<algorithm>
#include<unordered_map>
using namespace std;
int mod=1e9+7;
int main()
{
    int n;
    cin>>n;
    unordered_map<int,int> prime;
    while(n--)
    {
        int x;
        cin>>x;
        for(int i=2;i<=x/i;i++)
            if(x%i==0)
            {
                while(x%i==0)
                {
                    x/=i;
                    prime[i]++;
                }
            }
        if(x>1)  prime[x]++;
    }
    long long res=1;
    for(auto p:prime)  res=res*(p.second+1)%(mod);
    cout<<res<<endl;
    return 0;
}
//注意代码要放在两组三个点之间,才可以正确显示代码高亮哦~

作者:yankai
链接:https://www.acwing.com/activity/content/code/content/3744643/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

(3)约数之和

同理拆分每一个约数d为:

d=p_{1}^{b_{1}}p_{2}^{b_{2}}....p_{n}^{b_{n}}

则将每一个d累加,分解因式得:

 S=\sum_{i=1}^{n} d_{i}=(p_{1}^{0}+p_{1}^{1}+p_{1}^{2}...+p_{1}^{a_{1}})(p_{2}^{0}+p_{2}^{1}+p_{2}^{2}...+p_{2}^{a_{2}})...(p_{n}^{0}+p_{n}^{1}+p_{n}^{2}...+p_{n}^{a_{n}})

//这里填你的代码^^
#include<iostream>
#include<algorithm>
#include<unordered_map>
using namespace std;
int mod=1e9+7;

typedef long long LL;


int main()
{
    unordered_map<int,int> primes;
    int n;
    cin>>n;
    while(n--)
    {
        int x;
        cin>>x;
        for(int i=2;i<=x/i;i++)
            while(x%i==0)
            {
                x/=i;
                primes[i]++;
            }
        if(x>1) primes[x]++;
    }

    long long res=1;
    for(auto p:primes) 
    {
        LL a=p.first,b=p.second;
        LL t=1;
        while(b--) t=(t*a+1)%mod;
        res=res*t%mod;
    }
    cout<<res<<endl;
    return 0;
}
//注意代码要放在两组三个点之间,才可以正确显示代码高亮哦~

作者:yankai
链接:https://www.acwing.com/activity/content/code/content/3745052/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

 (4)最大公约数(欧几里得算法)

若d能整除a,d能整出b,则d能整除a和b的线性组合。因此(a,b)=(b,a mod b),左边的约数是右边的约数,右边的约数也是左边的约数。如此循环操作直至b==0,(a,0)的最大公约数为a,则a为原原式最大公约数。

#include<iostream>
using namespace std;

int gcd(int a,int b)
{
    return b?gcd(b,a%b):a;
}



int main()
{
    int n;
    cin>>n;
    while(n--)
    {
        int a,b;
        cin>>a>>b;
        cout<<gcd(a,b)<<endl;
        
    }
    
    return 0;
}

三、欧拉函数

(1)定义及常规求法

定义:1~N中与N互质的数的个数称为欧拉函数,记为\phi (N)。若在算数基本定理中,

N=p_{1}^{a_{1}}p_{2}^{a_{2}}p_{3}^{a_{3}}...p_{n}^{a_{n}}

则:

\phi (N)=N(1-\frac{1}{p_{1}})(1-\frac{1}{p_{2}}).....(1-\frac{1}{p_{n}})

 或写成:

\phi (N)=N(\frac{p_{1}-1}{p_{1}})(\frac{p_{2}-1}{p_{2}}).....(\frac{p_{n}-1}{p_{n}})

 证明:容斥原理。

求欧拉函数代码如下:

#include<iostream>
using namespace std;

int main()
{
    int n;
    cin>>n;
    while(n--)
    {
        int a; 
        cin>>a;
        int res=a;
        for(int i=2;i<=a/i;i++)
            if(a%i==0)
            {
                res=res/i*(i-1);
                while(a%i==0)  a/=i;
            }
        if(a>1) res=res/a*(a-1);
        cout<<res<<endl;
    }
    return 0;
}

(2)线筛法求欧拉函数

        分类讨论:

(1)若N为质数,则显然N质因子只有N,\phi(N)=N-1

(2)若N不为质数:在线筛法中,需要找出被筛去的数的欧拉函数,即primes[j]*i。其中有两种情况。

1.i%primes[j]==0,则primes[j]*i的质因子与i完全相同,所以相比之下只有“N”变了,因此phi[primes[j]*i]=phi[i]*primes[j]

2.i%primes[j]!=0,则primes[j]*i的质因子在i的基础上多了一个primes[j],因此

phi[primes[j]*i]=primes[j]*phi[i]*(1-\frac{1}{primes[j]})=primes[j]*phi[i]*(primes[j]-1)

线筛法求欧拉函数代码如下:
 

#include<iostream>
#include<algorithm>
using namespace std;
const int N =1000010;
int primes[N],cnt;
int phi[N];
bool st[N];


typedef long long LL;

void get_euler(int n)
{
    phi[1]=1;
    for(int i=2;i<=n;i++)
    {
        if(!st[i])
        {
            primes[cnt++]=i;
            phi[i]=i-1;//i是质数,显然从1~i-1都是与i互质的
        }
        for(int j=0;primes[j]<=n/i;j++)
        {
            st[primes[j]*i]=true;
            if(i%primes[j]==0)
            {
                phi[i*primes[j]]=phi[i]*primes[j];
                break;
            }
            phi[primes[j]*i]=phi[i]*(primes[j]-1);
        }
    }
    
}

int main()
{
    int n;
    cin>>n;
    LL res=0;
    get_euler(n);
    for(int i=1;i<=n;i++)
    {
        res+=phi[i];
    }
    cout<<res;
    return 0;
}

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值