Chapter 1 传热导论


title: 传热和传质的基本原理
author: 辉博氏
desc: CSDN

文章目录

前言

书名解释

名词解释
heat热能、热量
thermal science热力学性质
能量(力-机械能) 潜能、相变
物质

参考书

使用教材:《Fundamentals of Heat and Mass Transfer, 6 th edition》

推荐教材:

  • 《Heat Transfer》J.P.Holman
  • 《Thermal Radiational heat transfer》 Robert John. R. Howell
  • 《Nano microscale heat tranfer》ZhuomingZhang

热力学四大定律

热力学定律表达本质应用
第 0 定律热平衡处处温度相等温度可测
第 1 定律能量守恒热工转换、热传递、能量转换传热分析和检测 (Trust)
第 2 定律熵增定律(2 不可能)低温 → \cancel\rightarrow 高温(影响)高温 → \rightarrow 低温(压差、扩散)传热(自发过程)决定卡诺循环上限(空调制冷循环)
第 3 定律0 K 不可达到无限逼近(4 K)托克马克(核聚变反应堆)不可控-可控

热力学关系

局限:非平衡态传热机理与传热速率
目的:热力不平衡——热(温度)、力(压力)

Chap 1 传热导论

导论

  • 问题:

    1. 何为传热?
    2. 热能如何让传输的?
    3. 传热的重要性何在?
  • 对象

    1. 理解构成传热过程的 基本概念和原理
    2. 说明利用传热学知识和结合热力学第一定律(能量守恒)解决相关技术和社会问题的方法

Heat transfer Definition 传热定义

temperature difference

传热是因存在温差而发生的热能转移

Three modes 传热的三种模式

传热模式名词解释
Conduction 传导通过固体或静止流体的导热
Convection 对流由表面向运动物体的对流放热
Thermal Radiation 热辐射两个表面之间的辐射换热

Conduction 导热

Conduction mechanism 传导机理

分子和原子活动:

  1. 随机平动
  2. 内部旋转和振动
  • 分子的随机运动(diffusion 扩散) → \rightarrow 气体、液体

  • 原子晶格振动(lattice wave晶格波) → \rightarrow 固体

Conduction rate equation 导热速率方程(傅里叶定律)

一维平壁速率方程:
q x ′ ′ = − k d T d x q_{x}^{''}=-k\frac{dT}{dx} qx′′=kdxdT
其中:例题1.1(p5)

  • q x q_x qx Heat flux 热流密度 [ W / m 2 ] [W/m^2] [W/m2],与传输方向垂直的单位面积上, x x x方向传热速率

  • k k k thermal conductivity 热导率,导热系数 [ W / m ⋅ ℃ ] [W/m·℃] [W/m]

  • d T d x \frac{dT}{dx} dxdT,沿 x x x方向上的温度梯度

  • q = q x ′ ′ ⋅ A q=q_x^{''}·A q=qx′′A Heat rate 导热速率,热流量 [ W ] [W] [W]

    • steady state 稳态条件(热流密度为常数) → \rightarrow 线性温度分布

    d T d x = T 2 − T 1 L q x ′ ′ = − k T 2 − T 1 L = k Δ T L \frac{dT}{dx}=\frac{T_2-T_1}{L}\\ q_x^{''}=-k\frac{T_2-T_1}{L}=k\frac{\Delta T}{L}\\ dxdT=LT2T1qx′′=kLT2T1=kLΔT

Convection 对流

Convection mechanisms对流机理

由于流体之间发生相对位移而引起的热量传递过程

  1. 分子随机运动(diffusion扩散)
  2. 流体整体运动(advection平流)

Boundary layers边界层理论

边界层:

  • velocity layer速度边界层
  • temperature layer 温度边界层

Classification of convection 对流分类

  • Forced convection 强迫对流:由external forces外力作用引起
  • Free convection 自然对流:由buoyancy forces 浮生力(温度变化导致密度差)引起
  • Combined convection 混合对流
  • Boiling 沸腾
  • Condensation 冷凝

Convection rate equation热对流速率方程(牛顿冷却定律)

牛顿冷却定律:
q ′ ′ = h ( T s − T ∞ ) q^{''}=h(T_s-T_{\infty}) q′′=h(TsT)
其中:

  • q ′ ′ q^{''} q′′ 对流热流密度 [ W / m 2 ] [W/m^2] [W/m2]
  • h h h 对流传热系数 [ W / m 2 ⋅ K ] [W/m^2·K] [W/m2K]
    • 与边界层中条件有关
      • 表面的几何形状
      • 流体的运动特性
      • 流体的众多热力学性质
      • 输运性质
  • T s T_s Ts 表面温度 [ K , ℃ ] [K,℃] [K,]
  • T ∞ T_{\infty} T 流体温度 [ K , ℃ ] [K,℃] [K,]

典型对流换热系数数值的范围

自然对流 h / W ⋅ m − 2 ⋅ K − 1 h/W·m^{-2}·{K^{-1}} h/Wm2K1受迫对流 h / W ⋅ m − 2 ⋅ K − 1 h/W·m^{-2}·{K^{-1}} h/Wm2K1
气体2~25气体25~250
液体50~1000液体100~20000
伴随相变的对流沸腾或凝结2500~100000

Radiation (or thermal radiation)热辐射

物理机理与速率方程

任何非0 K 温度的物质都能发射能量

热辐射过程(无物质材料媒介)

热能—辐射能(electromagnetic wave 电磁波、光子)—热能

辐射速率方程(斯蒂芬-玻尔兹曼定律)

对于 black body 黑体
E b = σ T s 4 E_b=\sigma T_s^4 Eb=σTs4
对于 real body 实际物体
E = ε σ T s 4 E=\varepsilon\sigma T_s^4 E=εσTs4

其中:

  • E b E_b Eb 黑体辐射力 [ W / m 2 ⋅ K 4 ] [W/m^2·K^4] [W/m2K4]
  • σ \sigma σ 斯蒂芬玻尔兹曼常数 [ σ = 5.67 × 1 0 − 8 W / m 2 ⋅ K 4 ] [\sigma=5.67\times10^{-8}W/m^2·K^4] [σ=5.67×108W/m2K4]
  • T 绝对温度 [ K ] [K] [K]
  • ε \varepsilon ε 发射率(实际物体)

辐射与投入辐射

  • Radiation 辐射 → \rightarrow radiation emission
  • Irradiation 投入辐射 → \rightarrow radiation absorption

G a b s = α G = α σ T s u r 4 G_{abs}=\alpha G=\alpha \sigma T_{sur}^4 Gabs=αG=ασTsur4

其中:

  • α \alpha α absorptivity 吸收率,对于grey body 灰体 absorptivity发射率 = emissivity吸收率
  • 依赖于投入辐射&表面状况的本质
    • 液体:opaque(不透明)
    • 气体:transparent(透明)
    • 固体:opaque&semitransparent(半透明)

辐射换热速率

q r a d ′ ′ = q A = ε σ ( T s 4 − T s u r 4 ) q r a d = h r A ( T s − T s u r ) q_{rad}^{''}=\frac{q}{A}=\varepsilon\sigma(T_s^4-T_{sur}^4)\\ q_{rad}=h_{r}A(T_s-T_{sur})\\ qrad′′=Aq=εσ(Ts4Tsur4)qrad=hrA(TsTsur)

Radiative heat transfer coefficient 辐射换热系数

h r = ε σ ( T s + T s u r ) ( T s 2 + T s u r 2 ) h_r=\varepsilon\sigma(T_s+T_{sur})(T_s^2+T_{sur}^2) hr=εσ(Ts+Tsur)(Ts2+Tsur2)

表面总传热速率方程(包括对流和辐射)

q = q c o v + q r a d = h A ( T s + T ∞ ) + ε A σ ( T s 4 − T s u r 4 ) q=q_{cov}+q_{rad}=hA(T_s+T_{\infty})+\varepsilon A\sigma(T_s^4-T_{sur}^4) q=qcov+qrad=hA(Ts+T)+εAσ(Ts4Tsur4)

Overall heat transfer process 传热过程

例题 1.8(P40)

能量的守恒要求

通用平衡方程

A c c u m u l a t i o n = C r e a t i o n − D e s t r u c t i o n + F l o w   i n − F l o w   o u t ↓ R a t e   E q u a t i o n Accumulation=Creation-Destruction+Flow\ in -Flow\ out\\ \downarrow \\ Rate\ Equation Accumulation=CreationDestruction+Flow inFlow outRate Equation

  • 应用于任何广泛特性:

​ mass 质量,energy 能量,entropy 熵,momentun 动量,electric charge电荷

system 系统和control volume 控制容积的定义

system 系统:(A closed system 闭口系统)
  • no mass is exchanged 无质量交换

  • closed 闭口

control volume 控制容积:(A open system 开口系统)
  • mass can be exchanged 质量能被交换
  • useful in fluid mechanics, heat and mass transfer

控制体能量守恒

热力学第一定律:一个系统的总能量是守恒的

在一个闭口系统中(带有 fixed mass 固定质量),只有两种方式可使能量穿过系统边界:

  1. 穿过边界的传热 Q Q Q
  2. 对系统做功或系统向外界做功 W W W

Δ E s t t o t = Q − W \Delta E_{st}^{tot}=Q-W ΔEsttot=QW

  1. 第三种方式在控制容积(一个开口系统):energy advection (能量平流)
对于一个时间段( Δ t \Delta t Δt)的热力学第一定律:

​ 储存在控制容积内的能量增大的值,必定等于进入控制容积的能量减去离开控制容积的能量。

  • 总能=动能+势能+内能(热能+其他形式的能量(如:机械能、核能等)
  • 化学反应,电能,核能 → \rightarrow 热能
  • Generation产能 → E g \rightarrow E_g Eg
  • 机械能+热能 E s t E_{st} Est
对于一个时间段( Δ t \Delta t Δt)的热能和机械方程(Over a time interval)

​ 储存在控制容积中的热能和机械能增大的值,必定等于进入控制容积的热能和机械能减去离开控制容积的热能和机械能,再加上控制容积内产生的热能。
Δ E s t = E i n − E o u t + E g \Delta E_{st}=E_{in}-E_{out}+E_{g} ΔEst=EinEout+Eg
对于Control Volume (CV)控制体&边界(控制表面,CS)

  • E s t E_{st} Est:储存的热能和机械能
  • E g E_{g} Eg:产生的热能
  • E i n , E o u t E_{in},E_{out} Ein,Eout:传输通过控制表面的热能和机械能,流入和流出
对于一个瞬间( t t t)的热能和机械方程(At an instant)

E ˙ s t = d E ˙ s t d t = E ˙ i n − E ˙ o u t + E ˙ g \dot E_{st}=\frac{d\dot E_{st}}{dt}=\dot E_{in}-\dot E_{out}+\dot E_g E˙st=dtdE˙st=E˙inE˙out+E˙g

  • 单位 W = J / s W=J/s W=J/s
  • Inflow 流入和 outflow 流出项是 surface phenomena 表面现象
  • Generation 能量产生项与 accumulation 某种其他形式的内能(化学能、电能、电磁能或核能)是 volumetric phenomena 容积现象
表面的能量平衡

E ˙ i n − E ˙ o u t = 0 ↓ q c o n d ′ ′ − q c o n v ′ ′ − q r a d ′ ′ = 0 \dot E_{in}-\dot E_{out}=0\\ \downarrow\\ q_{cond}^{''}-q_{conv}^{''}-q_{rad}^{''}=0 E˙inE˙out=0qcond′′qconv′′qrad′′=0

  • 无能量产生项和储存项
  • 对温态和瞬态都成立
守恒定律的运用方法(有限控制容积或微元
  1. 定义一个控制容积或控制表面
  2. 确定合适的时间基准(一个时间段( Δ t \Delta t Δt)或一个瞬间( t t t))
  3. 确定相关的能量传输过程
  4. 定义和写出守恒方程

传热问题的分析方法

求解习题的程式步骤

  1. Know 已知
  2. Find 求
  3. Schematic 示意图
  4. Assumptions 假定
  5. Properties 物性参数
  6. Analysis 分析
  7. Comments 说明

单位和量纲

物理量量纲单位符号
长度 L L L m m m
质量 M M M千克 k g kg kg
时间 T T T s s s
电流强度 I I I安培 A A A
温度 T T T开尔文 K K K
光强 J J J坎得拉 c d cd cd
物质的量 N N N摩尔 m o l mol mol

两种不同 temperature scales 温标

  • The Celsius temp 摄氏温标: T ( ℃ ) T(℃) T()
  • The thermodynamic temp 热力学温标: T ( K ) T(K) T(K)

总结

传热过程总结

模式机理速率方程输运物性或系数
导热取决于随机分子运动的能量扩散 q x ′ ′ ( W / m 2 ) = − k d T d x q_x^{''}(W/m^2)=-k\frac{dT}{dx} qx′′(W/m2)=kdxdT k ( W / m ⋅ K ) k(W/m·K) k(W/mK)
对流取决于随机分子运动的能量扩散和整体运动(平流)的能量传递 q ′ ′ ( W / m 2 ) = h ( T s − T ∞ ) q^{''}(W/m^2)=h(T_s-T_{\infty}) q′′(W/m2)=h(TsT) h ( W / m 2 ⋅ K ) h(W/m^2·K) h(W/m2K)
辐射取决于电磁的能量传递 q ′ ′ ( W / m 2 ) = ε σ ( T s 4 − T s u r 4 ) o r   q ( W ) = h r A ( T s − T s u r ) q^{''}(W/m^2)=\varepsilon \sigma (T_s^4-T_{sur}^4)\\or\ q(W)=h_rA(T_s-T_{sur}) q′′(W/m2)=εσ(Ts4Tsur4)or q(W)=hrA(TsTsur) ε h ( W / m 2 ⋅ K ) \varepsilon\\h(W/m^2·K) εh(W/m2K)

应用

  • 控制体(CV)的能量守恒方程
  • 表面的能量平衡方程

热力学关系

  • 热力学研究平衡态(equilibrium state)

    • 工程热力学:热能的性质、热能与机械能及其其他形式能量之间相互转换的规律。单位:焦耳
  • 传热学研究过程和非平衡态(process and non-equilibrium state)

    • 传热学:热量传递过程的规律。单位:焦耳/时间=瓦特
  • 热力学以热力学第一定律和第二定律为基础:

    • 热量传递过程中若无能量形式的转移,则能量始终保持守恒
    • 热量传递始终是从高温物体向低温物体传递

作业布置

  • Conduction: 1.1, 1.6
  • Convection: 1.15, 1.18
  • Energy balance: 1.44
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辉博氏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值