n8n自动化工具部署与使用

目录

介绍

部署

常用工具

连接数据库

发送网络请求

 if

分批拆分:splitlnBatches

 数据筛选set

 后续


介绍

n8n是一款开源的工作流自动化工具,类似于IFTTT。它的优点是开源、可以自托管、下载安装方便、易于使用,可以互联上百种服务 。

n8n基于节点能够将任何工具连接在一起,轻松部署不同类型的任务。它可以做很多事情,比如:从数据库中获取数据后下载为excel然后通过邮件发送给其他人。

部署

因为安装比较麻烦,这里只演示使用docker

快速使用 docker run

docker run -it --rm --name n8n -p 5678:5678 -v ~/.n8n:/home/node/.n8n docker.n8n.io/n8nio/n8n

 因为使用docker run 很容易丢失使用时的数据,推荐使用docker compose

这是官方文档,里面有携带MySQL pgsql等的docker compose

码头工人 |n8n 文档

但是一般我们本地都有安装这些东西,就没必要再在docker里安装一个了

这是只有n8n的docker compose,

version: '3.8'

volumes:
  db_storage:
  n8n_storage:

services:
  n8n:
    image: docker.n8n.io/n8nio/n8n
    restart: always
    ports:
      - 5678:5678
    volumes:
      - n8n_storage:/home/node/.n8n
    command: /bin/sh -c "n8n start --tunnel"

 复制到本地的docker-compose.yml然后docker-compose up就可以了

http://localhost:5678/

打开我们的n8n页面,第一次登录注册账号密码

 注册完后在此页面点击add workflow就可以来添加我们的工作流了

n8n使用1

常用工具

 点击右上角的+号

 选择需要的工具

连接数据库

 双击打开mysql,点击create new credentlal

 填写自己的mysql信息,进行数据库连接

 在operation这选择你要进行的操作,增、删、改、查

 

发送网络请求

 使用HTTP Request这个组件可以发送网络请求,这里演示使用刚刚MySQL查询出来的数据进行发送请求 

设置HTTP请求参数,在数据库查询的数据id作为路径参数,body就是查出来的所有数据

 自己写一个api来接一下这些数据

 把body打印到控制台,可见请求是成功的

 回到n8n这边,在OUTPUT看见,api程序返回的请求成功也接受到了

 if

 IF组件使用方法其实就相当于后端编写的if函数

如下,判断data中的数据是不是等于 “请求成功!”,然后将组件连接上一个http请求

 因为前面5个请求都成功了,所以五条数据都走true通道

分批拆分:splitlnBatches

分批拆分,相当于一个for循环,可以设置把数据拆分成几份

添加一个splitlnBatches组件,设置batch size为1

改造一下刚刚的request,连上wait,再使用splitlnBatches将他们套起来,wait是一个等候,相当于后端中的睡眠,这样就可以实现将数据一条一条发送,每条之间设置一个等候时间,如3秒发送一条,缓解服务器的压力

 数据筛选set

 从数据中挑选出需要的数据,如,我们直接连接数据库,但是后续操作不需要这么多数据,只需要id和性别,就可以像我下面一样操作

 后续

n8n中还有很多非常实用的功能,这里就不一 一介绍了,有时间的话后续会补充一下其他功能

### 如何在 n8n 中配置和调用 GPT API 要在 n8n 中集成和使用 GPT API,可以通过创建自定义脚本节点或者利用现有的 HTTP 请求节点来完成。以下是具体方法: #### 配置 OpenAI 的 GPT API 密钥 首先需要获取 OpenAI 提供的 API Key,并将其存储在一个安全的地方以便后续访问。可以在 n8n 的凭证管理器中设置此密钥作为全局变量。 ```javascript // 设置环境变量以保护敏感数据 const apiKey = "{{ $credentials.apiKey }}"; ``` 此处 `$credentials` 是 n8n 内部机制的一部分,允许用户通过界面输入其个人认证信息而无需硬编码[^1]。 #### 使用 HTTP 节点发送请求至 GPT API n8n 支持多种内置节点类型之一即为 **HTTP Request Node** ,它可以直接向外部服务发起 GET 或 POST 请求。对于交互式 AI 接口如 GPT 来说通常采用后者形式提交 JSON 数据包给目标 URL 地址。 - **URL**: `https://api.openai.com/v1/completions` - **Method**: `POST` - **Headers** - 添加头文件字段名为 `"Authorization"` 值设为字符串前缀加上实际 token (`Bearer YOUR_API_KEY`)。 ```json { "Content-Type": "application/json", "Authorization": "Bearer {{apiKey}}" } ``` - **Body (JSON Format)** 下面是一个简单的例子展示如何构造 body 参数传递给服务器端处理逻辑: ```json { "model": "text-davinci-003", "prompt": "你好世界。", "max_tokens": 50, "temperature": 0.7 } ``` 上述代码片段中的每一项都有特定含义[^2]: - model: 所使用的语言模型版本号; - prompt: 用户提供的初始文本种子; - max_tokens: 返回的最大标记数量限制; - temperature: 控制随机性的参数值越低则结果更可预测反之更加多样化。 当以上所有步骤完成后就可以运行工作流程观察输出效果啦! 如果希望进一步简化操作过程也可以考虑开发专属插件扩展原生功能集[^4]。 ```python import openai openai.api_key = 'your_api_key_here' response = openai.Completion.create( engine="text-davinci-003", prompt="hello world.", max_tokens=60 ) print(response.choices[0].text.strip()) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱吃香蕉的阿豪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值