【大模型理论篇】主流大模型的分词器选择及讨论(BPE/BBPE/WordPiece/Unigram)

1. 背景分析

        分词是将输入和输出文本拆分成更小单位的过程,使得大模型能够处理。token可以是单词、字符、子词或符号,取决于模型的类型和大小。分词可以帮助模型处理不同的语言、词汇和格式,并降低计算和内存成本。分词还可以通过影响token的含义和上下文,影响生成文本的质量和多样性。

        我们在前述文章《BPE原理及代码示例》、《WordPiece原理及代码示例》、《Unigram原理及代码示例》三篇文章讨论了在预训练模型中最常用的三种tokenizer算法:BPE、WordPiece、Unigram。

        对这几类技术再做下简述,详细的可以点击链接看我们的文章:

BPE(字节对编码)

        BPE的核心概念是从字母开始,反复合并频率最高且相邻的两个token,直到达到目标词数。

BBPE

        BBPE的基本思想是将BPE从字符级别扩展到字节(Byte)级别。BPE在处理unicode编码时可能会导致基础字符集过大,而BBPE将每个字节视为一个“字符”,不论实际字符集用多少字节表示。这样,基础字符集的大小就固定为256(2^8),从而实现跨语言共享词表,并显著缩减词表大小。然而,对于像中文这样的语言,文本序列长度会显著增加,这可能使得BBPE模型的性能优于BPE模型,但其序列长度较长也会导致训练和推理时间增加。BBPE的实现与BPE类似,主要差别在于基础词表使用256的字节集。

WordPiece

        WordPiece算法可视为BPE的变种。不同之处在于,WordPiece通过概率生成新的subword,而不是简单地选择频率最高的字节对。WordPiece每次从词表中选出两个子词合并成一个新子词,但选择的是能最大化语言模型概率的相邻子词。

Unigram

        Unigram与BPE和WordPiece在本质上有明显区别。前两者从小词表开始,逐步增加到设定的词汇量,而Unigram则先初始化一个大词表,通过语言模型评估逐步减少词表,直到达到目标词汇量。

2. 分词粒度的讨论

        技术有这么多,那该如何选择?首先我们来看下不同粒度的token有哪些影响?

2.1 针对小的token的分析

优势:

1.较小的token使得模型能够生成和理解更广泛的单词,包括通过组合较小的部分来处理从未见过的单词。

2.由于token较小,词汇大小通常较小,从而在某些方面节省内存和计算资源。

3.较小的token一般也更适合处理多种语言或代码,尤其是当这些语言具有不同的句法或语法结构时。

4.较小的token可能更好地处理拼写错误。

缺点:

1.较小的token意味着给定文本会被拆分成更多的词元,从而增加处理文本的计算成本。

2.另外由于固定的最大token限制,使用较小的token可能导致模型能够考虑的实际内容的“上下文”减少。

3.较小的token可能导致表达存在一定的模糊度,使模型在没有足够上下文的情况下更难理解token序列的含义。

2.2 针对大的token的分析

优点:

1.较大的token减少表示文本所需的token数量,从而在计算上提高了处理效率。

2.在固定的最大token数限制下,较大的token允许模型考虑更长的文本,从而可能提高理解和生成能力。

3.较大的token可能直接捕捉到更多细致的含义,减少因将单词拆分成更小部分而产生的模糊性。

缺点:

1.较大的token通常需要更大的词汇来捕捉相同范围的文本,这可能会带来占用大量内存的现象。

2.较大的token可能限制模型对未见或稀有单词的泛化能力,因为整个token必须与模型的词汇中的某个内容匹配。

3.较大的token可能在处理复杂形态或句法的语言时效果不佳,或在需要理解多种语言的任务中。

4.较大的token对拼写错误、拼写变体及其他文本中的小变化敏感。

3. 主流大模型的分词器选择

模型分词器
GPT-4oBPE(BBPE)【2】
GPT3BPE(BBPE)【3】
GPT2BPE(BBPE)【4】
GPTBPE【5】
Llama3BPE(BBPE)【6,8】
Llama2BPE(BBPE)【7,8】
Qwen2BPE(BBPE)【9,10】
QwenBPE(BBPE)【11】
ChatGLMBBPE【12】
BaichuanBPE【13】
RoBERTaBPE【5】
BARTBPE【5】
DeBERTaBPE【5】
MPNETWordPiece【14】
Funnel TransformersWordPiece【14】
MobileBERTWordPiece【14】
DistilBERTWordPiece【14】
BERTWordPiece【14】
T5Unigram【15】
AlBERTUnigram【15】
mBARTUnigram【15】
XLNetUnigram【15】

        当然虽然说GPT系列或者其他大模型用的都是BPE(BBPE),但在处理上还会有一些细微的差异。可以试用下openai提供的在线tokenizer工具:https://platform.openai.com/tokenizer

        此外, OpenAI、Google、huggingface分别都提供了开源的tokenizer工具:tiktokensentencepiecetokenizers,支持主流的分词算法。

扩展阅读:

全方位解读大模型:多样知识点的深度探讨与技术分享小结

4. 参考材料

【1】Understanding “tokens” and tokenization in large language models

【2】openai/tiktoken

【3】gpt-tokenizer

【4】Language Models are Unsupervised Multitask Learners

【5】Byte-Pair Encoding tokenization

【6】Llama3

【7】Llama2

【8】Llama (LLM)

【9】qwen2-concepts

【10】tokenization_qwen2

【11】qwen/tokenization_note

【12】tokenization_chatglm

【13】Baichuan-7B

【14】WordPiece tokenization

【15】Unigram tokenization

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源泉的小广场

感谢大佬的支持和鼓励!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值