步骤
- 新建Python文件
- 全部可选参数
- 修改标签名称大小
- 结果展示
新建Python文件
并添加line_width
参数输入合适的int
数值
from ultralytics import YOLO
# Load a pretrained YOLOv8n model
model = YOLO("path/to/your/model.pt")
# Run inference on 'bus.jpg' with arguments
model.predict("path/to/your/image.jpg", show_labels=True, save=True, line_width=2)
全部可选参数
Inference arguments:
Argument | Type | Default | Description |
---|---|---|---|
source | str | 'ultralytics/assets' | Specifies the data source for inference. Can be an image path, video file, directory, URL, or device ID for live feeds. Supports a wide range of formats and sources, enabling flexible application across different types of input. |
conf | float | 0.25 | Sets the minimum confidence threshold for detections. Objects detected with confidence below this threshold will be disregarded. Adjusting this value can help reduce false positives. |
iou | float | 0.7 | Intersection Over Union (IoU) threshold for Non-Maximum Suppression (NMS). Lower values result in fewer detections by eliminating overlapping boxes, useful for reducing duplicates. |
imgsz | int or tuple | 640 | Defines the image size for inference. Can be a single integer 640 for square resizing or a (height, width) tuple. Proper sizing can improve detection accuracy and processing speed. |
half | bool | False | Enables half-precision (FP16) inference, which can speed up model inference on supported GPUs with minimal impact on accuracy. |
device | str | None | Specifies the device for inference (e.g., cpu , cuda:0 or 0 ). Allows users to select between CPU, a specific GPU, or other compute devices for model execution. |
max_det | int | 300 | Maximum number of detections allowed per image. Limits the total number of objects the model can detect in a single inference, preventing excessive outputs in dense scenes. |
vid_stride | int | 1 | Frame stride for video inputs. Allows skipping frames in videos to speed up processing at the cost of temporal resolution. A value of 1 processes every frame, higher values skip frames. |
stream_buffer | bool | False | Determines if all frames should be buffered when processing video streams (True ), or if the model should return the most recent frame (False ). Useful for real-time applications. |
visualize | bool | False | Activates visualization of model features during inference, providing insights into what the model is “seeing”. Useful for debugging and model interpretation. |
augment | bool | False | Enables test-time augmentation (TTA) for predictions, potentially improving detection robustness at the cost of inference speed. |
agnostic_nms | bool | False | Enables class-agnostic Non-Maximum Suppression (NMS), which merges overlapping boxes of different classes. Useful in multi-class detection scenarios where class overlap is common. |
classes | list[int] | None | Filters predictions to a set of class IDs. Only detections belonging to the specified classes will be returned. Useful for focusing on relevant objects in multi-class detection tasks. |
retina_masks | bool | False | Uses high-resolution segmentation masks if available in the model. This can enhance mask quality for segmentation tasks, providing finer detail. |
embed | list[int] | None | Specifies the layers from which to extract feature vectors or embeddings. Useful for downstream tasks like clustering or similarity search. |
Visualization arguments:
Argument | Type | Default | Description |
---|---|---|---|
show | bool | False | If True , displays the annotated images or videos in a window. Useful for immediate visual feedback during development or testing. |
save | bool | False | Enables saving of the annotated images or videos to file. Useful for documentation, further analysis, or sharing results. |
save_frames | bool | False | When processing videos, saves individual frames as images. Useful for extracting specific frames or for detailed frame-by-frame analysis. |
save_txt | bool | False | Saves detection results in a text file, following the format [class] [x_center] [y_center] [width] [height] [confidence] . Useful for integration with other analysis tools. |
save_conf | bool | False | Includes confidence scores in the saved text files. Enhances the detail available for post-processing and analysis. |
save_crop | bool | False | Saves cropped images of detections. Useful for dataset augmentation, analysis, or creating focused datasets for specific objects. |
show_labels | bool | True | Displays labels for each detection in the visual output. Provides immediate understanding of detected objects. |
show_conf | bool | True | Displays the confidence score for each detection alongside the label. Gives insight into the model’s certainty for each detection. |
show_boxes | bool | True | Draws bounding boxes around detected objects. Essential for visual identification and location of objects in images or video frames. |
line_width | None or int | None | Specifies the line width of bounding boxes. If None , the line width is automatically adjusted based on the image size. Provides visual customization for clarity. |
修改标签名称大小
寻找自己文件目录下的ultralytics/ultralytics/utils/plotting.py
Ctrl+F
打开查找搜索annotator
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=10, pil=True, example=names)
将font_size
修改到合适尺寸的数值
结果展示
修改前
修改后