空间解析几何:圆柱面一般式方程的推导——已知中轴线和半径

本文详细介绍了在已知中轴线和半径情况下如何构建和求解圆柱面方程,通过步骤阐述了从点到直线的距离公式到圆柱面一般方程的推导过程。并结合2021年全国大学生数学建模竞赛的实际问题,展示了如何利用圆柱面方程解决特定问题,即找到抛物面斜上方一定范围内的所有点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        本文主要针对在已知中轴线半径r的情况下(其中为中轴线上的已知一点)如何来求解圆柱面方程做出详细解答。

 1.圆柱面模型建立

 

Step 1:假设点P 为待求圆柱面上的任意一点,由于点P到直线q的垂直距离PM为r,即,其中,点M为直线q上一点,

Step 2:由欧式距离公式直线对称式方程的原理可得

 由的向量式可得:

 其中为直线的方向向量。

 Step 3:由上图几何关系可知

 又因为

所以得

 Step 4:由于式(1)和式(2)用不同方法求

所以有式(1)=式(2),即如下等式:

 从而得到该待求圆柱面的一般方程式

 

下面以2021年全国大学生数学建模竞赛A题第二问为例。

       若要求出在该抛物面斜上方即300m口径上方所有的点,可以构造一个以300m口径为准线,平行于直线CS为母线的圆柱体,从而利用圆柱体方程内部不等式的关系求出所有主索节点中以直线CS为投影方向,投影在该300m口径中的主索节点。

2.圆柱面模型求解

     由题已知,当待观测天体𝑆位于𝛼 = 36.795°, 𝛽 = 78.169时,其理想抛物面的方程为:

       

明显可知该抛物面的轴线不平行于任何一个坐标轴即该抛物面是斜置在三维空间坐标系中。

可以构造一个以抛物面中轴线CS为轴线,半径为150m的圆柱面。

 本题中

 代入上述模型中,可得:

 所以可分别求得的向量式与几何关系式

 其中𝛼 = 36.795°, 𝛽 = 78.169°,r=150m,

 所以可得圆柱面方程:

 且三维空间坐标系内任意一点在圆柱面内外的关系如下:

 

 

 

 

 

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值