关于DSO直接法与IMU预积分联合VIO/SLAM一些思路

本文不适合初学者;干货多没写具体方法,目前还在数论分解和思考中,估计得2个月后完成。

必要性:

1.常规VIO系统如VINS-MONO建立的地图质量太差,稀疏且不便认知

2.假设并入D相机,无论紧耦合还是松耦合,工作量依旧巨大(进行中)

3.自家硬件与光学相机在光学侧的调整能力越来越强,如光圈的控制,曝光时间的控制,全局快门等变化

4.DSO等直接法在纯视觉侧建图优势很大

5.DSO等直接法仍然没有解决视觉导航的各种问题(无纹理等blabla见前文),需要耦合IMU预积分并入,并辅助以对应手段解决极端场景。

6.如果想用纯视觉DSO得到更鲁棒的位置姿态与建图,只能依赖硬件,如下图(来自港科大的新成果)所示的使用360度鱼眼相机,但这一方面提升了成本,一方面对后端算力平台的要求更高了。

 

DSO的作者很厉害,无论是数论还是代码本身都很强,但缺点就是导致了DSO本身的代码虽然精简,但是并不容易理解,先说一下对DSO关键点的理解

DSO- D:直接 S:稀疏 O:里程计,看着有点矛盾,但是实现很好。

1. DSO是前

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值