One way 和two way ANOVA分析的区别是啥,以及如何使用SPSS或者prism进行统计分析

One wayTwo way ANOVA分析的区别是啥

那么什么叫关心的变量呢?  观测变量,结果变量。

两个自变项(或属性变项、类别变项)对於某个依变项(观察变项)交互作用的影响。

比如说你想观察儿子的身高(连续变量),那么你可以讨论:父亲身高对儿子身高,以及母亲身高对儿子身高的影响。你认为影响观测样本的量有两个,一个是父亲身高(必须分级:高,中,低),一个是母亲身高(必须分级:高,中,低)。  每个小组的样本量要一样;

那么这个时候就要用:two-way ANOVA进行分析了。检测的H0假设是:父亲的身高对儿子身高没有影响;母亲的身高对儿子的身高没有影响;父亲身高和母亲身高之间没有相互作用。 H1假设是:。

==============================================

统计笔记

介绍的非常详细;

没有交叉的话,可以认为两个因素对结果没啥 叠加影响。

 =========================================

 

=======================

使用prism进行two way ANOVA分析:

Prism作图与统计教程(二) - 知乎

不同天,以及不同组  对结果的影响。

结果如下:

多重比较结果:  不同天,两组之间是否有显著性差异: 

 ====

总结:

参考资料:

SPSS超详细操作:两因素多元方差分析(Two-way Manova) - 知乎

医咖会 - 临床研究设计和医学统计交流平台

### 单因素ANOVA分析的实现方法 #### Python 实现单因素 ANOVA 分析 在 Python 中,`scipy.stats` `statsmodels` 是两个常用的库来执行单因素方差分析 (One-Way ANOVA)。以下是具体的操作方式: 通过 `scipy.stats.f_oneway()` 函数可以直接完成单因素方差分析的任务。该函数接受多个样本组作为输入参数,并返回 F 值 p 值[^1]。 ```python from scipy import stats # 定义三组数据 group1 = [9, 8, 7, 6, 5] group2 = [10, 9, 8, 7, 6] group3 = [11, 10, 9, 8, 7] # 执行单因素方差分析 f_value, p_value = stats.f_oneway(group1, group2, group3) print(f"F-value: {f_value}, P-value: {p_value}") ``` 如果需要更详细的统计报告以及验证假设条件(如正态性方差齐性),则推荐使用 `statsmodels` 库。它提供了更为全面的功能支持[^3]。 ```python import pandas as pd import statsmodels.api as sm from statsmodels.formula.api import ols # 创建 DataFrame 数据集 data = { 'values': [9, 8, 7, 6, 5, 10, 9, 8, 7, 6, 11, 10, 9, 8, 7], 'groups': ['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'C', 'C', 'C', 'C', 'C'] } df = pd.DataFrame(data) # 使用 OLS 模型拟合数据 model = ols('values ~ C(groups)', data=df).fit() anova_table = sm.stats.anova_lm(model, typ=2) print(anova_table) ``` 上述代码片段展示了如何利用 Pandas 构造数据框并调用 StatsModels 的 API 来生成完整的 ANOVA 表格。 #### R 实现单因素 ANOVA 分析 对于 R 用户而言,内置函数 `aov()` 可轻松完成单因素方差分析。下面是一个简单的例子说明其基本语法结构: ```r # 输入数据向量 group_a <- c(9, 8, 7, 6, 5) group_b <- c(10, 9, 8, 7, 6) group_c <- c(11, 10, 9, 8, 7) # 合并成因子变量形式 response <- c(group_a, group_b, group_c) treatment <- factor(rep(c("Group A", "Group B", "Group C"), each=5)) # 进行单因素方差分析 result <- aov(response ~ treatment) summary(result) ``` 此脚本创建了一个响应变量 (`response`) 对应的分组标签 (`treatment`) ,随后运用 `aov()` 方法构建模型对象最后打印总结信息得出结论关于均值差异显著性的判断依据即P值大小情况。 --- ### 结论 无论是选用 Python 或者 R 都能高效便捷地达成单因素 ANOVA 分析目标。Python 更加灵活多变适应广泛场景需求而 R 则以其简洁易懂著称于特定领域比如生物医学科研项目当中经常采用后者进行复杂高级别的多元回归或者混合效应建模等工作流程之中[^2].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值