信号完整性与电源完整性学习总结

本总结基于中国工信出版社与电子工业出版社出版的《信号完整性与电源完整性分析第三版》

第一章:信号完整性分析概论

高速电路设计中的三大主要问题:

1.信号完整性(Signal Integrity,SI),指信号波形的失真;
2.电源完整性(Power Integrity,PI),主要指为有源器件供电的互连线及各相关元件上的噪声;
3.电磁兼容( ElectroMagnetic Compatibility,EMC),主要指产品自身产生的电磁辐射和由外场导人产品的电磁干扰。

串扰:正是网络之间的容性耦合和感性耦合,为有害噪声从一个网络到达另一个网络提供了路径。同时,也可以将其描述为从攻击网络到受害网络边缘电磁场的作用。

串扰主要分为容性耦合和感性耦合。当感性耦合噪声处于主导地位时,通常把这种串扰归为开关噪声、 噪声、di-dt 噪声、地弹、同时开关噪声(Simultaneous Switching Noise,SSN)或同时开关输出(Simultaneous Switching0utput,SS0)噪声。这类噪声是由耦合电感(即所谓的互感)产生的。开关噪声大多发生在接插件、封装和过孔处。在这些结构中,电流返回路径的导体不是一个大的均匀面。

电源噪声产生原因:当通过电源路径和地路径的电流发生变化,如芯片输出翻转或内核中的门翻转时,在电源路径和地路径之间的阻抗上将产生一个压降。当电源分配网络中存在电抗元件,尤其是当其并联谐振时,电源开关电流会导致在电源轨道上出现更高的电压尖峰。

为了能在开关电流切换时降低电源轨道上的电压噪声,最佳的设计方法就是将电源分配网络设计为低阻抗的。

设计一个低阻抗电源分配系统应考虑以下特性:

1.相邻的电源和地分配层平面的介质应尽可能薄,以使它们更紧密贴近;

2.加装多个低电感去耦电容器;

3.封装时安排多个很短的电源和地引脚;

4.低阻抗稳压模块( Voltage Regulator Module,VRM);

5.封装去耦(On-Package Decoupling,OPD)电容器;

6.片内去耦(On-Chip Decoupling,ODC)电容。

电磁干扰问题包括3方面:噪声源、辐射传播路径和天线
两种最常见的电磁干扰源分别为:(1)一部分差分信号转换成共模信号,最终在外部的双绞电缆线上输出;(2)电路板上的地弹在外部单端屏蔽线上产生共模电流。附加的噪声可以由内部产生的辐射泄漏逸出屏蔽罩而引起。

测量无源元件的仪器主要有如下3种:
1.阻抗分析仪;
2.矢量网络分析仪(VNA);
3.时域反射计(TDR)。

第二章:时域与频域

时域:随时间而变化的域,在坐标中表示为:横轴是时间,纵轴是信号的变化。时域是真实世界,是唯一实际存在的域。

频域:随频率而变化的域,在坐标中表示为:横轴是时间,纵轴是信号的幅值。频域最重要的性质是:它不是真实的,而是一个数学构造。时域是唯一客观存在的域,而频域是一个遵循特定规则的数学世界。正弦波是频域唯一存在的波形。

正弦波的4个性质:

1.时域中的任何波形都可由正弦波的组合完全且唯一地描述。
2.任何两个频率不同的正弦波都是正交的。如果将两个正弦波相乘并在整个时间轴上求积分,则积分值为零。这说明可以将不同的频率分量相互分离开。
3.正弦波有完美的数学定义。
4.正弦波及其微分值处处存在,没有上下边界。现实世界是无穷的,因此可用正弦波描述现实中的波形。

正弦波三大参数:频率、幅度和相位。

带宽:用于表示频谱中最高的有效正弦波频率分量值。

带宽与上升边的关系为:BW = 0. 35/RT
BW表示带宽(单位为GHz),RT表示10%~90%上升边(单位为ns)。

带宽与频率的近似计算:当上升边则是周期的7%时,带宽近似为0.35/(上升边),又因为周期和频率互为倒数,所以可以给出两者之间的关系式,即带宽是时钟频率的5倍:BWclk = 5 x Fclk。其中,BWclk 表示时钟带宽的近似值(单位为GHz),Fclk表示时钟频率(单位为GHz)。

互联上升边:输出后的上升边可近似为下式:

RT_{out}^{2}=RT_{in}^{2}+RT_{interconnect}^{2}
其中,RT_{out}^{2}表示输出信号的10%~90%上升边,RT_{in}^{2}表示输入信号的10%~90%上升边RT_{interconnect}^{2}表示互连的本征10%~90%上升边。

第三章:阻抗与电气模型

阻抗:电压和电流之比,通常用大写字母Z表示。Z=V/I这个定义始终都是正确的。式中的电压、电流和互连阻抗这3个基本参量的相互作用,决定了所有的信号完整性效应。当信号沿互连传播时,它将不断地探测互连的阻抗,并做出相应的反应。

以下4类基本信号完整性问题都可以用阻抗加以描述:

1.任何阻抗突变都会引起电压信号的反射和失真,这会使信号质量出现问题。如果信号感受到的阻抗保持不变,就不会发生反射,信号也不会失真。衰减效应是由串联和并联阻性阻抗引起的。

2.信号的串扰是由两条相邻信号线(当然还有它们的返回路径)之间电场和磁场的耦合引起的,信号线之间的互耦电容和互耦电感形成的阻抗决定了耦合电流和耦合电压的值。

3.如果信号线之间的互感较高,就会产生地弹。当信号线之间的互容增加或者返回路径有损坏时,互感将显著增加。

4.随着频率的升高而加大的损耗衰减,导致了上升边的拉长。

5.电源供电轨道的塌陷实际上与电源分配网络(PDN)的阻抗有关。系统中必然流动着一定的电流量,以供给所有的芯片。当芯片的电流切换时,由于电源和地之间存在着阻抗,就会形成压降。这个压降意味着电源轨道和地轨道从标称值向下塌陷。

6.最大的电磁干扰根源是流经外部电缆的共模电流,此电流由地平面上的电压引起。在地平面上,返回电流路径的阻抗越大,电压降即地弹就越大,由它再激起辐射电流。减少电缆电磁干扰的最常用方法是在电缆周围使用铁氧体扼流圈,这主要是为了增加共模电流所受到的阻抗,从而减少共模电流。

理想电阻器:Z=R

理想电容器:在理想电容器中,两块极板之间存储的电荷和它们之间的电压差存在一定的关系。理想电容器的电容值定义如下:C=Q/V
其中,C表示电容(单位为F),V表示两极板之间的电压(单位为V),Q表示在极板之间存储的电荷(单位为库仑)。

理想电容器的 I-V特性定义:
I=\frac{dQ}{dt}=C\frac{dV}{dt}
其中,I表示流过电容器的电流,Q表示电容器的一个极板上的电荷量,C表示电容器的电容值,V表示电容器两端的电压。

理想电容器的阻抗:
Z=\frac{V}{I}=\frac{V}{C\frac{dV}{dt}}
其中,V表示电容器两端的电压,C表示电容器的电容值,I表示流过电容器的电流。

理想电感器的定义如下:
V=L\frac{dI}{dt}

其中.V表示电感器两端的电压,L表示电感器的电感值,I表示流过电感器的电流。

理想电感器的阻抗,即电感器两端的电压与流经电感器的电流之比:
Z=\frac{V}{I}=L\frac{dI}{\frac{dt}{I}}

V表示电感器两端的电压,L表示电感器的电感,I表示流过电感器的电流。

 频域中理想电阻特性:若采用电压与电流的比值表示电阻器的阻抗,则会发现阻抗就是电阻值:

Z=\frac{V}{I}=\frac{=I_{0}sin(\omega t)R}{I_{0}sin(\omega t)}=R
这个阻抗与频率无关,且相移为零。在任何频率上,理想电阻器的阻抗都是相等的。这和在时域中看到的结果完全一致。

频域中理想电容的特性:在频域中分析理想电容器时,在电容器两端加上一个正弦电压,流经电容器的电流是电压的导数,即为余弦波:
I=C\frac{d}{dt}V_{0}sin(\omega t)=C\omega V_{0}cos(\omega t)

从上式可以看出,即使电压幅度不变,电流的幅度也会随着频率的升高而增加。频率越高,流经电容器的电流幅度就越大,这表明电容器的阻抗会随着频率的升高而减小。

理想电容器的阻抗公式如下:

Z=\frac{V}{I}=\frac{V_{0}sin(\omega t)}{C\omega V_{0}cos(\omega t)}=\frac{ 1}{\omega C}\cdot \frac{sin(\omega t)}{cos(\omega t)}

频域中理想电感的特性:下面对电感器进行相同的频域分析。如果正弦电流流经电感器,则产生的电压为

V=L\frac{d}{dt}I_{0}sin(\omega t)=L\omega I_{0}cos(\omega t)
上式表明,当电流的幅度固定不变时,频率越高,电感器两端的电压就越大。也就是说,频率升高时需要更高的电压,才能使相同幅度的电流流经电感器。可见,电感器的阻抗随着频率的升高而增大。

理想电感器的阻抗公式如下:

Z=\frac{V}{I}=\frac{L\omega I_{0}cos(\omega t)}{I_{0}sin(\omega t)}=\omega L \frac{cos(\omega t)}{sin(\omega t)}

RLC简单等效模型如下图

第四章:电阻的物理基础

对于导线横截面恒定的情况,电阻值可以由下式近似得出:R=\rho \frac{Len}{A}
其中,R表示电阻值(单位为Ω),\rho表示导线的体电阻率(单位为Ω·cm),Len表示互连两端的距离(单位为cm),A表示横截面积(单位为CM²)。

若导线的横截面是均匀的,例如引线或电路板上的线条,则互连电阻与长度成正比。使用上面的近似公式,对于横截面均匀的导线,其单位长度电阻也是恒定的,即

R_{L}=\frac{R}{Len}=\frac{\rho }{A}

其中,R_{L}表示单位长度电阻,Len 表示互连长度,\rho表示体电阻率,A表示电流流过的横截面积。

第五章:电容的物理基础

电容定义:C=Q/V。

其中,C表示电容(单位为F),Q表示总电荷量(单位为 C),V表示导体之间的电压(单位为 V)。

流经电容器的电流可表示为:
I=\frac{\triangle Q}{\triangle t}=C\frac{dV}{dt}       
其中,I表示流过电容器的电流,\triangleQ表示电容器上电荷的变化量,\trianglet表示电荷变化经历的时间,C表示电容量,dV表示导体之间的电压变化,dt表示电压变化所经历的时间。

平行板电容近似值:

C=\varepsilon _{0}\frac{A}{h}

其中,C表示电容量(单位为pF),\varepsilon _{0}表示自由空间的介电常数(为0.089pF/cm或0.225pF/in),A表示平板的面积,h表示平板间距。

去耦电容计算公式:电源轨道上涉及电流消耗的指标是功耗,因为功耗等于消耗电流乘以轨道电压。如果芯片的功率损耗为P,则电流为I=P/V。由于去耦电容的作用,电压下沉幅度达到电源电压5%时的时间近似为:
\delta t=C\times 0.05\times \frac{V^{2}}{P}
其中,\delta t表示电压下沉幅度达到电源电压5%时的时间(单位为s),C表示去耦电容量(单位为F),0.05 表示容许5%的电压下沉(即降幅),P表示芯片的平均功率损耗(单位为W),V表示电源电压(单位为V)。

在均匀横截面的互连中,信号路径与返回路径之间的电容为:
C=C_{L}\times Len
其中,C表示互连的总电容,C,表示单位长度电容,Len表示互连的长度。

第六章:电感的物理基础

电感三大基本法则:

1.电流周围会形成闭合磁力线圈

2.电感是导体电流1A时周围的磁力线匝数

3.周围磁力线匝数改变时导体两端产生感应电压

电感定义公式:L=\frac{N}{I}

其中,L表示电感(单位为H),N表示导体周围的磁力线匝数(单位为Wb),I表示导体中的电流(单位为A)。

自感:自感是指导线中流过单位安培电流时,所产生的环绕在导线自身周围的磁力线匝数。通常我们所说的电感实际上是导线的自感。

互感:互感是指一条导线中流过单位安培电流时,所产生的环绕在另一条导线周围的磁力线匝数。

感应电压定义公式:V=\frac{\bigtriangleup N}{\bigtriangleup t}=\frac{\bigtriangleup LI}{\bigtriangleup t}=L\frac{dI}{dt}

其中,V表示导线两端的感应电压,\bigtriangleup N表示磁力线匝数的变化量,\bigtriangleup t表示磁力线匝数变化的时间。

互感电压定义公式:V_{noise}=M\frac{dI}{dt}

其中,V_{noise}表示互感应电压噪声,M表示两条导线之间的互感(单位为Wb),I表示第二条导线b中的电流。

互感电路中磁力线总匝数计算公式:N_{total}=N_{b}-N_{ab}=(L_{b}-L_{ab})I

(L_{b}-L_{ab})称为支路b的总电感、净电感或有效电感,它是指回路中电流为单位安培时,支路b周围的磁力线匝总数,其中包括整个回路中所有电流段的影响。

地弹:当相邻电流的方向相反时,如回路的两条支路中的一条是另一条的返回电流路径时,有效电感决定了回路电流变化时支路两端感应电压的大小。如果这第二条支路是返回路径,则称在该返回路径上产生的电压为地弹。

地弹压降计算公式:V_{gb}=L_{total }\frac{dI}{dt}=(L_{b}-L_{ab})\frac{dI}{dt}

其中,V_{gb}表示地弹电压,L_{total }表示返回路径的净电感, I表示回路中的电流,L_{b}表示返回路径支路的局部自感,L_{ab}表示返回路径和初始路径之间的局部互感。

减小地弹的两种方法:

第一种方法,尽可能减小回路电流的变化速率。这意味着降低边沿变化率,并限制共用同一个返回路径的信号路径数目,以及使用差分信令。

第二种方法,尽可能减小L_{total}。减小返回路径总电感的要点有两方面:减小支路的局部自感,增大两支路之间的局部互感。减小返回支路的局部自感意味着使返回路径尽可能短、尽可能宽(也就是使用平面):增大返回路径和初始路径之间的互感则意味着使第一条支路与其返回路径尽可能地靠近。

回路自感:L_{loop}=L_{a}-L_{ab}+L_{b}-L_{ab}=L_{a}+L_{b}-2L_{ab}

其中,L_{loop}表示双端回路的回路自感,L_{a}表示支路a的局部自感,L_{b}表示支路b的局部自感,L_{ab}
表示支路a和b之间的局部互感。

电源分配网络两条设计准则:要使电源分配网络的阻抗比较小,有两条设计原则:低频时,添加具有低回路电感的去耦电容器:高频时,使去耦电容器和芯片焊盘之间的回路电感最小,以保持它们之间的阻抗低于一定的值。

去耦电容计算公式:C=\frac{1}{0.05}\frac{P}{V^{2}}\triangle t

其中,\bigtriangleup t表示电荷由电容器供给的时间(单位为s),0.05 表示容许5%的电压下沉,C表示去耦电容器的容量(单位为F),V表示轨道电压(单位为V),P表示芯片的功耗(单位为W)。

去耦电容特性:去耦电容器的一个重要特性是:在频率较高时,阻抗仅与回路电感有关,此电感称为等效串联电感(ESL)。所以,频率较高时,减小去耦电容器的阻抗实际上就是设法减小芯片焊盘和去耦电容器引脚之间这一完整路径的回路电感。高频时,减小去耦电容器阻抗的唯一方法就是减小它的回路自感(即回路电感)。

减小去耦电容器的回路电感的最好方法有以下几种:
1.使电源平面和地平面靠近电路板表面层,以缩短过孔:
2.使用尺寸较小的电容器:
3.从电容器焊盘到过孔之间的连线要尽量短:
4.将多个电容器并联使用。

对于宽导体,宽度w远大于它们的间距h,即w》h,两平面之间的回路电感可以很好地近似为:

L_{loop}=\mu _{0}h\frac{Len}{w}

其中,L_{loop}表示回路电感(单位为nH),\mu _{0}表示自由空间的磁导率(为32pH/mil),h表示平面间距(单位为mil),Len表示平面的长度(单位为mil),w表示平面的宽度(单位为mil)。

在叠层设计时,电源平面和地平面尽可能地靠近,就可以减小平面对的回路电感,同时减小轨道塌陷、平面上的地弹和电磁干扰。

多个电感等效模型:

在电流方向相同的情况下,两个局部电感串联,其等效局部电感为:

L_{series}=L_{1}+L_{2}+2L_{12}

两个元件并联连接时,其等效局部电感为:

L_{parallel}=\frac{L_{1}L_{2}+L_{12}(L_{1}+L_{2})+L_{12}^{2}}{L_{1}+L_{2}+2L_{12}}

其中,L_{series}表示串联的等效局部自感,L_{parallel}表示并联的等效局部自感,L_{1}表示其中一个元件的局部自感,L_{2}表示另一个元件的局部自感,L_{12}表示两个元件之间的局部互感。

电感的各种分类:

1.电感:流过单位安培电流时,环绕在导体周围的磁力线匝数。

2.自感:导体中流过单位安培电流时,环绕在该导体周围的磁力线匝数。

3.互感:某一导体流过单位安培电流时,环绕在另一导体周围的磁力线匝数。

4.回路电感:流过单位安培电流时,环绕在整个电流回路周围的磁力线总匝数。

5.回路自感:完整电流回路中流过单位安培电流时,环绕在该回路周围的磁力线总匝数

6.回路互感:某一回路中流过单位安培电流时,环绕在另一完整电流回路周围的磁力线匝数。

7.局部电感:其他地方没有电流存在时,环绕在该段导线周围的磁力线匝数。

8.局部自感:仅在一段导线中有单位安培电流而其他地方无电流存在时,环绕在该段导线自身周围的磁力线匝数。

9.局部互感:仅在某一段导线中有单位安培电流而其他地方无电流存在时,环绕在另一段导线周围的磁力线匝数。

10.有效电感、净电感或总电感:当整个回路中流过单位安培电流时,环绕在一段导线周围的磁力线总匝数,其中包括源于回路每一部分电流的磁力线。

11.等效电感:多个电感器的串联或并联组合后单一自感的大小,其中包括它们之间互感的影响。

随着圆柱杆中电流的正弦波频率升高,电流将重新分布,大部分电流选择阻抗最低的路径,即沿着导线外表面流动,在高频时就像所有电流只在导线表面很薄的一层内流动。

涡流:当其中一个导体的电流变化时,第二个导体中会产生感应电流,我们称这种电流为涡流。

第七章:传输线的物理基础

传输线:传输线是由两条有一定长度的导线组成的。为了区分这两条导线,我们把一条称为信号路径,另一条称为返回路径。如下图所示:

均匀传输线:如果导线上任一处的横截面都相同,比如同轴电缆,则称这种传输线为均匀传输线也称为可控阻抗传输线。

电子的运动速度约为1cm/s,这相当于蚂蚁在地上爬的速度。与空气中的光速相比,导线中电子的运动速度简直微不足道,所以导线中电子的速度与信号的速度没有任何关系。同理,由分析可知,导线的电阻对传输线上信号的传播速度几乎没有任何影响。只在一些极端的情况下,互连的电阻才会影响信号的传播

信号传播速度:导线周围的材料、信号在传输线导体周围空间形成交变电场和磁场的建立速度和传播速度,决定了信号的传播速度。

电磁场变化(或场链)的速度,由下式得到:v=\frac{1}{\sqrt{\varepsilon _{0}\varepsilon _{r}\mu _{0}}\mu _{r}}

其中,\varepsilon _{0}表示自由空间的介电常数(为8.89\times 10^{12}F/m),\varepsilon _{r}表示材料的相对介电常数,\mu _{0}表示自由空间的磁导率(为4\pi \times 10^{-7}H/m),\mu _{r}表示材料的相对磁导率。

空气中的相对介电常数和相对磁导率都为1,光的速度约为12im/ns。

绝大多数互连中的光速约为\frac{12 in/ns}{\sqrt{4}}=6 in/ns。当估算电路板互连中的信号的速度时,就可以假定它约为6 in/ns。

时延T_{D}与互连长度的关系如下:T_{D}=\frac{len}{v}

其中,T_{D}表示时延(单位为ns),Len表示互连长度(单位为in),v表示信号的速度(单位为in/ns)。

传输线在上升边内的长度Len 取决于信号的传播速度和上升边,即:len=RT×v

其中,Len 表示上升边的空间延伸(单位为in),RT表示信号的上升边(单位为ns),v表示信
号的速度(单位为in/ns)。

零阶模型传输线瞬时阻抗:Z=\frac{V}{I}=\frac{V}{C_{L}vV}=\frac{1}{C_{L}v}=\frac{83\Omega }{C_{L}}\sqrt{\varepsilon _{r}}

其中,Z表示传输线的瞬时阻抗(单位为Ω),C_{L}表示单位长度电容量(单位为pF/in),v表示材料中的光速,\varepsilon _{r}表示材料的介电常数。

特殊阻抗:有一种反映均匀传输线特性的恒定瞬时阻抗,称为传输线的“特性阻抗”。

传输线的输入阻抗与时间有关,它取决于测量时间相对于信号往返时间的长短,如下图所示。在信号的往返时间内,传输线前端的阻抗就是传输线的特性阻抗。在信号往返时间之后,根据传输线末端负载的不同,输人阻抗可在零到无穷大之间变化。

传输到输出线的电压:V_{launched}=V_{output}(\frac{Z_{0}}{R_{source}+Z_{0}})

其中,V_{launched}表示加到传输线上的电压,V_{output}表示驱动器驱动开路电路时的输出电压,R_{source}表示驱动器的输出源电阻,Z_{0}表示传输线的特性阻抗。

当传输线的信号电流路径与返回电流路径不是相邻层时,输入阻抗为:Z_{Input}=Z_{1-2}+Z_{2-3}。如下图:

传输线一阶模型如下图:

在一阶模型中,传输线的特性阻抗和时延为:

C_{total}=C_{L}\times Len

L_{total}=L_{L}\times Len

Z_{0}=\sqrt{\frac{L_{L}}{C_{L}}}

T_{D}=Len\times \sqrt{C_{L}L_{L}}=\frac{Len}{v}

v=\frac{Len}{T_{D}}=\frac{1}{\sqrt{C_{L}L_{L}}}

其中,Z_{0}表示特性阻抗(单位为Ω),L_{L}表示传输线的单位长度回路电感,C_{L}表示传输线的单位长度电容,T_{D}表示传输线的时延,L_{total}表示传输线的总回路电感,C_{total}表示传输线的总电容,v表示传输线中的信号速度。

第八章:传输线与反射 

反射系数计算公式:\rho =\frac{V_{reflected}}{V_{incident}}=\frac{Z_{2}-Z_{1}}{Z_{2}+Z_{1}}

其中,V_{reflected}表示反射电压,V_{incident}表示人射电压,Z_{1}表示信号最初所在区域的瞬时阻抗,Z_{2}表示信号进入区域2时的瞬时阻抗,\rho表示反射系数。

信号驱动内阻为10Ω,经过传输线阻抗为50Ω,远端为开路的反射图如下:

即使设计电路板时采用可控阻抗互连,在以下场景,信号仍会遇到阻抗突变:
1.线的两端;
2.封装引线;
3.输入门电容;
4.信号层之间的过孔;
5.拐角;
6.桩线;
7.分支;
8.测试焊盘;
9.返回路径上的间隙;
10.过孔区的颈状;
11.线交叉。

信号线长时延在上升边的20%、30%、40%的测试情况如下图。由此测试结果可大致估计:当传输线时延T_{D}大于信号上升边的20%时,就要开始考虑由于导线没有终端端接而产生的振铃噪声。时延大于上升边20%时,振铃噪声会影响电路功能,必须加以控制,否则它将是造成信号完整性问题的隐患。如果T_{D}小于上升边的20%,就可以忽略振铃噪声,传输线无须终端端接。

无需端接电阻的最大线长约为:Len_{max}< RT

其中,Len_{max}表示无终端端接的传输线的最大长度(单位为in),RT表示信号上升边(单位为ns)。

点到点拓扑结构的四种端接方式,如下图所示。其中源端串联端接为最常见的端接方式。

允许阻抗突变的最大线长约为:Len_{max}< RT

其中,Len_{max}表示阻抗突变的最大长度(单位为in),RT表示信号上升边(单位为ns)。

允许阻抗突变的最大线长约为:Len_{stub-max}< RT

其中,Len_{stub-max}表示阻抗突变的最大长度(单位为in),RT表示信号上升边(单位为ns)。

容性终端的反射:容性终端的反射系数随时间的变化而变化。反射信号将先下跌再上升到开路状态时的情形。传输的波形是由传输线特性阻抗Z_{0}、电容器的电容量和信号上升边决定的。下图给出了电容器容量分别为2pF,5pF和10pF时,仿真得到的反射信号和传输信号波形。

RC充电时间常数为:\gamma _{e}=RC,这个时间常数是电压上升到电压终值的1/e或37%所需的时间。10%~90%上升边与RC时间常数为:\gamma _{RT}=2.2\gamma _{e}=2.2RC

在有容性负载的传输线末端,电压的变化形式就像RC在充电。其中C是负载的电容量,R是传输线特性阻抗Z_{0}。传输信号的10%~90%上升边主要由RC充电电路决定,约为:\gamma _{RT}=2.2Z_{0}C

走线中途容性负载的反射:传输线中的理想电容器的影响由信号上升边和电容量决定。电容量越大,电容器阻抗就越小,负反射电压就越大,从而接收端的下冲也就越大。同理,上升边越短促,电容器阻抗就越小,下冲也就越大。下图表明了在上升边为0.5ns的信号,在途中遇见0pF,2pF,5pF,10pF时,传输线的反射信号和传输信号。 

拐角对信号的影响:弯曲处的额外线宽是使拐角影响信号传输的唯一因素,它如同一个容性突变正是这个容性突变引起了反射和传输信号的时延累加。

感性突变的反射:当信号在传输的过程中遇见不同感性突变近端信号的形状会先上升后下降,称为非单调性,即信号不是稳定一致地单调上升。下图表明了在不同感性突变情况下的源端和接收端的信号。

补偿:在感性突变两侧各加一个小电容器,就能将感性突变转变成一节传输线。

接收端的5种能量损耗方式:1.辐射损耗;2.耦合到相邻走线;3.阻抗不匹配;4.导线损耗;5.介质损耗。

第九章:有损线、上升边退化与材料特性

传输线的5种损耗:1.辐射损耗;2.耦合到相邻走线;3.阻抗不匹配;4.导线损耗;5.介质损耗。

高频时,铜导线中电流经过的横截面厚度约等于集肤深度,计算公式为:

\delta =2.1\sqrt{\frac{1}{f}}

其中,\delta表示集肤深度(单位为\mu m),f表示正弦波频率(单位为GHz)。

信号感受到的电阻取决于导线传输电流的有效横截面。频率越高,电流流经的导线横截面就越小,电阻随着频率的升高而增加。与频率有关的趋肤效应使电阻随频率变化。但要注意,当频率变化时,铜和大多数金属的电阻率是相当恒定的,所变化的是电流流过的横截面。

由于趋肤效应,如果电流仅流过导线的下半部分,则导线的电阻近似为:

R=\rho \frac{Len}{\omega \delta }

其中,R表示线电阻(单位为Ω),\rho表示导线的体电阻率(单位为Ω.in),Len 表示线长(单位为in),\omega表示线宽(单位为in),\delta表示导线的集肤深度(单位为in)。

微带线信号路径的总电阻预计约为:R=0.8\rho \frac{Len}{\omega \delta }

其中,R表示线电阻(单位为Ω),\rho表示导线的体电阻率(单位为Ω.in),Len 表示线长(单位为in),\omega表示线宽(单位为in),\delta表示导线的集肤深度(单位为in),0.8为系数。 

下图理想的二阶n节集总电路模型为有损传输线的近似模型。一般最小需要10节LC模型,才能近似于高带宽的情况。

 当信号沿导线传播时,导线损耗对信号的主要影响就是使信号幅度衰减。如果幅度为的正弦波信号在传输线中传播,则信号幅度将随着传输距离的增加而降低。如果能够让时间凝固以观察线上存在的正弦波,则各个不同点的波形如下图所示。其中,正弦波频率为1CHz,FR4板上有线宽为10mil,长40in的 50 Ω微带线。

一个粗略的经验法则:沿FR4板上传输线传播的信号,它的上升边将以10ps/in的速度增加。

第十章:信号线的串扰

串扰:串扰是发生在一个线网的信号路径及返回路径与另一个线网的信号路径及返回路径之间的一种效应。不仅是信号路径,而且它与整个信号-返回路径回路都密切相关。

边缘场是引起串扰的根本原因。减小串扰的最主要途径就是使线网之间的距离足够远,这样可以把它们之间的边缘场减小到可接受的水平。另一个设计途径就是使返回平面更靠近信号线,从而将边缘场限制在信号线附近。

串扰耦合等效模型如下图:

减小远端串扰的四大方法:

1.增加信号路径之间的间距。

2.减小耦合长度。

3.在表面层导线的上方加介质材料。

4.将敏感线布成带状线。

互感占主导地位时产生的噪声称为开关噪声,减小地弹的三种方法:1.增加返回路径数量,这样每条返回路径上总的 dI/dt 就会减小;2.增加返回路径的宽度并减小长度,使它的局部自感最小化;3.将每一个信号路径靠近它的返回路径,以便增加它与返回路径之间的局部互感。

最大可容许的回路互感为:L_{m}=\frac{V_{n}}{V_{a}}\left ( RT\times Z_{0} \right )

其中,L_{m}表示动态回路和静态回路之间的互感,V_{n}表示静态回路上的电压噪声,V_{a}表示动态回路上的信号电压,RT表示信号的上升边(即电流开启的快慢),Z_{0}表示动态回路和静态回路上的信号受到的典型阻抗。

降低串扰的措施:

1.增加信号路径之间的间距;

2.用平面作为返回路径;

3.使耦合长度尽量短;

4.在带状线层布线;

5.减小信号走线的阻抗;

6.使用介电常数较低的叠层 ;

.在封装和连接器中不采用公共返回引脚;

8.当两条信号线之间的高隔离度很重要时,把它们布在具有不同返回平面的不同层上;     

9.防护布线对微带线的作用不是很大。对于带状线,最好在两端和沿线都使用有短路过孔的防护布线。 

第十一章:差分对与差分阻抗

差分对是指存在耦合的一对传输线。

差分信令是用两个输出驱动器去驱动两条独立的传输线,一条线运送1比特,而另一条线运送它的补。所测量的信号是两条线之间的差,这一差信号携带着要传送的信息。

差分信令的优点:

1.双驱动器产生的 dl/dt 比单端驱动器时的大幅降低,从而减小了地弹、轨道塌陷和潜在的电磁干扰。

2.与单端放大器相比,接收器中的差分放大器可以有更高的增益。

3.差分信号在一对紧耦合差分对中传播,其串扰较小,应对差分对的两条传输线公共返回路径中的突变的稳健性也比较好。

4.差分信号通过连接器或封装时,不易受到地弹和开关噪声的干扰。

5.使用价格低廉的双绞线即可实现较远距离的差分信号的传输。

差分对的5种特征:

1.差分对的最重要的性质是,它的横截面积恒定不变,而且使差分信号有一个恒定的阻抗。这些特性将会保证差分信号的反射和失真最小化。

2.差分对的第二个重要性质是,每条线上的时延是相同的,从而确保了差分信号边沿的陡峭。两条传输线上的任何时延差或错位(skew),都会导致差分信号失真,并使部分差分信号变成共模信号。

3.两条传输线应该完全相同,线的宽度和两条线之间的介质间距也应该完全相同。这种特性称为对称性。两条线不能有任何不对称,如一条线上有测试焊盘而另一条线上却没有,或一条线上有向下的颈状而另一条线上却没有,这种不对称都会使差分信号变成共模信号。

4.传输线的长度也必须完全相同。线的总长度完全相同,就能保证传输线上的时延相同使错位最小。

5.差分对的两条传输线之间不一定有耦合,但没有耦合将导致差分对的抗噪声能力下降与单端传输线相比,两条信号线之间的耦合使差分对对于由其他动态线网产生的地弹噪声有更好的稳健性。线间耦合程度越强,差分信号就越不容易受到突变和非理想情况的影响。

1.差分对的最重要的性质是,它的横截面积恒定不变,而且使差分信号有一个恒定的阻抗。这些特性将会保证差分信号的反射和失真最小化。2.差分对的第二个重要性质是,每条线上的时延是相同的,从而确保了差分信号边沿的陡峭。两条传输线上的任何时延差或错位(skew),都会导致差分信号失真,并使部分差分信号变成共模信号。
3.两条传输线应该完全相同,线的宽度和两条线之间的介质间距也应该完全相同。这种特性称为对称性。两条线不能有任何不对称,如一条线上有测试焊盘而另一条线上却没有,或一条线上有向下的颈状而另一条线上却没有,这种不对称都会使差分信号变成共模信号。
4.传输线的长度也必须完全相同。线的总长度完全相同,就能保证传输线上的时延相同使错位最小。
5.差分对的两条传输线之间不一定有耦合,但没有耦合将导致差分对的抗噪声能力下降与单端传输线相比,两条信号线之间的耦合使差分对对于由其他动态线网产生的地弹噪声有更好的稳健性。线间耦合程度越强,差分信号就越不容易受到突变和非理想情况的影响。

1.差分对的最重要的性质是,它的横截面积恒定不变,而且使差分信号有一个恒定的阻抗。这些特性将会保证差分信号的反射和失真最小化。2.差分对的第二个重要性质是,每条线上的时延是相同的,从而确保了差分信号边沿的陡峭。两条传输线上的任何时延差或错位(skew),都会导致差分信号失真,并使部分差分信号变成共模信号。
3.两条传输线应该完全相同,线的宽度和两条线之间的介质间距也应该完全相同。这种特性称为对称性。两条线不能有任何不对称,如一条线上有测试焊盘而另一条线上却没有,或一条线上有向下的颈状而另一条线上却没有,这种不对称都会使差分信号变成共模信号。
4.传输线的长度也必须完全相同。线的总长度完全相同,就能保证传输线上的时延相同使错位最小。
5.差分对的两条传输线之间不一定有耦合,但没有耦合将导致差分对的抗噪声能力下降与单端传输线相比,两条信号线之间的耦合使差分对对于由其他动态线网产生的地弹噪声有更好的稳健性。线间耦合程度越强,差分信号就越不容易受到突变和非理想情况的影响。

无耦合时的差分阻抗为:Z_{diff}=\frac{V_{diff}}{I_{one}}=\frac{2\times V_{one}}{I_{one}}=2\times \frac{V_{one}}{I_{one}}=2\times Z_{0}

其中,Z_{diff}表示信号线对于差分信号的阻抗(即差分阻抗),{V_{diff}}表示跳变差分信号电压,I_{one}表示流经每条信号线与其返回路径之间的电流,V_{one}表示每条信号线与其邻近返回路径之间的电压,Z_{0}表示单端信号线的特性阻抗。

对任何一对共用返回导体的单端传输线而言,如果返回导体距信号走线足够远,差分信号的返回导体电流分布就会相互重叠并完全抵消掉。此时返回路径导体的存在对差分阻抗产生不了任何影响。在这种特定条件下,第一条信号线上的返回电流将完全可能由另一条信号线运送。有以下3种情况需要关注:
1.边缘耦合微带线,返回平面足够远;
2.双绞线电缆;
3.宽边耦合带状线,返回平面足够远,

根据经验法则,当信号线与返回路径平面之间的距离大于等于两条信号线外边缘之间的跨度时,返回路径平面内的电流互相重叠,,返回路径平面的存在对信号线的差分阻抗没有影响。此时对差分信号而言,一条信号线的返回电流完全可以看成由另一条信号线运送。

两条线上有相同的驱动电压的为偶模,两条线上有相反的驱动电压为奇模。当差分对以这两种模态中的一种激励时,它上面的信号就可以实现无失真传播。

当差分信号加在差分对上时,它将使差分对处于奇模状态。根据定义,此时每条信号线的特性阻抗称为奇模特性阻抗。差分阻抗是奇模阻抗的2倍。因此差分阻抗为:Z_{diff}=2\times Z_{odd}

共模信号使差分对处于偶模状态。当传输线上传播共模信号时,根据定义,此时每条线的特性阻抗称为偶模特性阻抗。对于共模信号而言,阻抗是每条线特性阻抗的并联。两个偶模阻抗的并联阻值为:Z_{comm}=Z_{eqiuv}=\frac{Z_{even}\times Z_{even}}{Z_{even}+Z_{even}}=\frac{1}{2}Z_{even}

其中,Z_{comm}表示共模阻抗,Z_{even}表示当差分对处于偶模状态时每条线的特性阻抗。

对于一个对称的差分对而言,差分信号以奇模方式行进,共模信号以偶模方式行进。我们也可以用奇和偶这两个术语描述一个任意信号。以偶模方式传播的电压分量V_{even}就是信号的共模分量。以奇模方式传播的电压分量V_{odd}就是信号的差分分量。如下式所示:

V_{odd}=V_{diff}=V_{1}-V_{2}

V_{even}=V_{comm}=\frac{1}{2}\times \left ( V1+V2 \right )

其中,V_{even}表示以偶模方式传播的电压分量,V_{odd}表示以奇模方式传播的电压分量,V_{1}表示线1与公共返回路径之间的信号,V_{2}表示线2与公共返回路径之间的信号。

信号沿传输线的传播速度是由电力线穿过的介质的有效介电常数决定的。有效介电常数越大,传播速度越慢,以该模态传播的信号的时延就越大。以带状线为例,导体周围的介质材料是均匀的。对电力线而言,有效介电常数始终等于体介电常数,而与电压模式无关。在带状线中,奇模和偶模的传播速度是相等的。
但是在微带线中,对于电力线而言,介电常数是一个复合值,它一部分处于体介质材料中,一部分处于空气中。场分布的精确模式和覆加介质材料的方式都将会影响最终的有效介电常数和信号的实际传播速度。在奇模方式下,多数电力线位于空气中;在偶模方式下,多数电力线处于体材料中。由于这个原因,奇模信号比偶模信号有一个稍微小一点的有效介电常数,因此行进得更快。

一对耦合传输线上的近端(后向)噪声V_{b}和远端(前向)噪声V_{f},其关系式为:

V_{b}=V_{a}k_{b}

V_{f}=V_{a}\frac{Len}{RT}k_{f}

其中,V_{b}表示后向噪声,V_{f}表示前向噪声,V_{a}表示动态线电压,k_{b}表示后向近端串扰系数,k_{f}表示前向远端串扰系数,Len 表示耦合区域的长度,RT表示信号的上升边。

从差分对的角度看,串扰系数为

k_{b}=\frac{1}{2}\frac{Z_{even}-Z_{odd}}{Z_{even}+Z_{odd}}

k_{f}=\frac{1}{2}\left ( \frac{1}{V_{odd}}-\frac{1}{V_{even}} \right)

共模信号与差模信号同时端接的两种拓扑结构,如下图:

在π形拓扑结构中,各电阻值可以用下面的方法加以计算。使共模信号受到的等效电阻等于共模阻抗,使差分信号受到的等效电阻等于差分阻抗。共模信号受到的等效电阻为两个电阻器 R,的并联,即R_{eqiuv}=\frac{1}{2}R_{2}=Z_{comm}=\frac{1}{2}Z_{even}

其中,R_{eqiuv}表示共模信号受到的等效电阻,R_{2}表示电阻器R_{2}的阻值,Z_{comm}表示差分对的共模阻抗,Z_{even}表示差分对的偶模阻抗。从上式可解得R_{2}=Z_{even}

差分信号受到的等效电阻为两个电阻器R,串联后再和电阻器R,并联,即R_{eqiuv}=\frac{R_{1}\times 2R_{2}}{R_{1}+ 2R_{2}}=Z_{diff}=2\times Z _{odd}

其中,R_{eqiuv}表示差分信号受到的等效电阻,R_{1}表示电阻器R_{1}的阻值,R_{2}表示电阻器R_{2}的阻值Z_{diff}表示差分对的差分阻抗,Z _{odd}表示差分对的奇模阻抗。

因为R_{2}=Z_{even},由上式可以求得R_{1}为:R_{1}=\frac{2Z_{even}Z_{odd}}{Z_{even}-Z_{odd}}

在T形拓扑结构中,差分信号受到的等效电阻是两个电阻器R,的串联,即

R_{eqiuv}=Z_{diff}=2R_{1}=2Z_{odd}

其中,R_{eqiuv}表示差分信号受到的等效电阻,R_{1}表示电阻器R_{1}的阻值,Z_{diff}表示差分对的差分阻抗,Z_{odd}表示差分对的奇模阻抗。从上式可解得R_{1}=Z_{odd}

共模信号受到的等效电阻为两个电阻器R_{1}并联后再和R_{2}串联,即

R_{eqiuv}=Z_{comm}=\frac{1}{2}R_{1}+R_{2}=\frac{1}{2}Z_{even}

从上式可解得R_{2}=\frac{1}{2}\left ( Z_{even}-Z_{odd} \right )

端接差分信号和共模信号的另一种可取方案是在T形端接中加入隔直流电容器,电路结构如下图所示。该拓扑结构中,电阻与基本T形结构中的电阻阻值相等。选择电容器时要保证共模信号感受到的时间常数(其值等于RC)远大于信号中的最低频率分量所对应周期的数值,这样才能保证在信号的最低频率分量内电容器的阻抗小于电阻器的阻抗。作为一阶估计,电容量初步选择为

RC=100\times RT

C=\frac{100\times RT}{Z_{comm}}

其中,R表示共模信号受到的等效电阻值,C表示隔直流电容器的电容值,RT表示信号的上升边,Z_{comm}表示共模阻抗。

在差分信令中,信息都由差分信号运送。差分信号有以下设计原则:
1.使用可控差分阻抗;
2.使差分对的突变最小化;
3.在远端端接差分信号。

通常,以下3种技术可以减小双绞线电缆中共模电流的辐射。
1.将差分对之间的不对称和驱动器之间的错位降到最低,从而使差分信号向共模信号的转化降到最低限度。这是从源头将问题最小化了。

2.使用屏蔽双绞线,用屏蔽层作为共模电流的返回路径。因为当返回路径距信号路径很近时可能引起共模阻抗的减小,所以使用屏蔽层电缆可以增大共模电流。如果将屏蔽层连接到机架底板,共模信号的返回电流就会在屏蔽层内流动。此时共模信号就会在这种同轴结构内流动,从双绞线中心的电缆流出,再流入屏蔽层。在这种几何结构中不会出现外部电场或磁场,共模电流不会向外辐射。此时需要在屏蔽层与机架底板之间有一个低感抗的连接,这样共模返回电流就能维持一种同轴结构分布。

3.用添加共模扼流器的办法增大共模电流路径的阻抗。共模信号扼流器有两种形式事实上所有外围设备中的电缆都有铁氧材料圆柱体环绕在电缆的外部,放置的位置如下图所示。铁氧体的高磁导率将会增加流过铁氧体净电流的电感和阻抗。此外,以太网链路中使用的许多RJ-45连接器都内置了共模铁体扼流圈。

第十二章:S参数在信号完整性中的应用

S参数描述了从互连末端散射出的比如正弦波的精确波形。S参数就是散射参数的缩写。

S参数就是输出正弦波和输入正弦波的比值,S参数的幅值就是两个幅值的比值,S参数的相位是输出正弦波与输入正弦波的相位差。

每个S参数定义为:

如下图所示,无论被测元器件的内部结构如何,这一基本定义都可以适用。S_{11}代表从端口1进入并从端口1出去的信号。S_{21}代表从端口1进人并从端口2出去的信号。同理,S_{12}代表从端口2进入并从端口1出去的信号。

二端口元器件包含了3个独立的S参数:S_{11}S_{22}S_{21},其中每个矩阵元素都是随频率而变化的复数。S_{11}项又称为反射系数,S_{21}项又称为传输系数。S_{11}幅度的绝对值(以 dB为单位)称为返回损耗,S_{21}幅度的绝对值(以 dB为单位)称为插入损耗。

插入损耗计算公式: IL=-10 lg(Pout /Pin), Pout 为输出光功率,Pin 为输入光功率。插入损耗的数值越小表示性能越好。

返回损耗计算公式为:RL=-10 lg(P0/P1), P0表示反射光功率,P1表示输入光功率。回波损耗值表示为dB,通常为负值,因此回波损耗值越大越好。

第十三章:电源分配网络

电源分配网络又称为电源配送网络(PDN),包含从稳压模块(VRM)到芯片的焊盘,再到裸芯片内分配本地电压和返回电流的片上金属层在内的所有互连。其中有稳压模块、体去耦电容器、过孔、互连、电路板上的平面、板外附加电容器、封装的焊球或引脚、装在电路板上的封装中的互连、键合线或C4焊球、芯片上的内部互连等。

对电源分配网络的首要和基本要求是,保持芯片焊盘间的供电电压恒定,并使它能够维持在一个很小的容差范围内,通常在5%以内。从直流到高于1GHz的开关电流带宽范围内,该电压值都必须在其容差范围内保持稳定。

电源分配网络的作用有3个:保持芯片焊盘间的供电电压恒定,使地弹最小化使电磁干扰问题最小化。

在大多数设计中,用于供应电力的电源分配网络互连也总是用于运送信号线的返回电流这些电源分配网络互连的第二个作用是提供一个低阻抗的信号返回路径。提供低阻抗路径的最简单方法是使互连足够宽,从而使返回电流尽可能的分布开,并且让信号线保持分离,使得它们的返回电流不会相互重叠。若不满足这些条件,则返回电流将会聚集,不同信号的返回电流将会互相重叠。其结果就是产生地弹,也称为同时开关噪声(SSN)或开关噪声。

如果芯片消耗的是一个恒定直流电流,那么由于互连的串联电阻存在,该直流电流将在电源分配网络互连上产生压降,通常称为IR压降。当芯片的电流发生波动时,电源分配网络上的压降也会随之波动,从而使芯片焊盘上的电压也产生波动。现在不仅要考虑电源分配网络的电阻性阻抗,还要考虑复阻抗,其中包括电源分配网络互连的感性阻抗与容性阻抗。从片上焊盘看过去的电源分配网络阻抗,通常是一个与频率相关的阻抗,记为Z(f)。当具有一定频谱宽度的波动电流I(f)通过电源分配网络的复阻抗时,电源分配网络上将会产生电压降:

V\left ( f \right )=I\left ( f \right )\times Z\left ( f \right )

其中,V\left ( f \right )表示电压,是随频率变化的函数,I\left ( f \right )表示芯片消耗电流的频谱,Z\left ( f \right )表示由芯片焊盘看到的电源分配网络阻抗曲线。

电源分配网络上的这一压降表明稳压器输出的恒定电压是芯片得不到的,在进入芯片前已被改变。芯片焊盘上的电压变化必须在给定的电流波动下小于某一电压噪声容差,就是通常所说的纹波。这就要求电源分配网络阻抗必须低于某一最大容许值,即目标阻抗:

V_{ripple}> V_{PDN}=I\left ( f \right )\times Z_{PDN}\left ( f \right )

Z_{PDN}\left ( f \right )< \frac{V_{ripple}}{I\left ( f \right )}=Z_{target}\left ( f \right )

其中,V_{ripple}表示芯片的电压噪声容差(单位为V),V_{PDN}表示电源分配网络互连上的噪声压降(单位为 V),I\left ( f \right )表示芯片消耗电流的频谱(单位为A),Z_{PDN}表示由芯片焊盘看过去的电源分配网络阻抗曲线(单位为Ω),Z_{target}\left ( f \right )表示电源分配网络所容许的最大阻抗(单位为Ω)。

设计电源分配网络的过程中的3个最重要的设计准则如下:
1.让电源和地平面成为相邻的平面层,平面之间的介质要尽量薄,并且还要让平面尽可能靠近电路板层叠结构的表面层;
2.在去耦电容器焊盘和连往内层电源/地平面腔的过孔之间,使用尽可能短而宽的表层走线,并在具有最低回路电感的位置放置电容器;
3.使用 SPICE选择最佳的电容器容值及其个数,以使阻抗曲线低于目标阻抗。

实际上,与电源分配网络的高频部分发生相互作用的并不是峰值电流,而是最大瞬变(跳变)电流。如果有一个稳定直流电流由芯片消耗,稳压模块的误差敏感电路通过补偿就可以维持轨道电压接近额定电压值。当电流在直流值的上下变化时,无论是增加还是减少,如果大于稳压模块的响应频率,则电流将会与电源分配网络阻抗发生作用。
电源分配网络的最大阻抗,即目标阻抗,就是形成小于可接受纹波压降的最大阻抗。可以由下式得到:

Z_{PDN}\times I_{transient}=V_{noise}< V_{DD}\times ripple

Z_{target}< \frac{V_{DD}\times ripple}{I_{transient}}

其中,V_{DD}表示特定轨道的供电电压,I_{transient}表示最坏情况下的瞬变电流,Z_{PDN}表示在某一频率下的电源分配网络阻抗,Z_{target}表示目标阻抗,即电源分配网络容许的最大阻抗,V_{noise}表示最坏情况下的电源分配网络噪声,ripple表示可容许的纹波,在本例中假定为±5%。

当瞬变电流不确定时,我们根据经验法则,大致估算为最大瞬变为峰值电流的一半:

I_{transient}\approx \frac{1}{2}\times I_{max}

其中,I_{transient}表示芯片最坏情况下的瞬变电流,I_{max}表示芯片的最大的总电流。

根据芯片数据手册提供的最大功耗可计算峰值电流:I_{peak}=\frac{P_{max}}{V_{DD}}

目标阻抗可估算为:Z_{target}\left ( f \right )< \frac{V_{DD}\times ripple}{I_{transient}}=2\times \frac{V_{DD}\times ripple\times V_{DD}}{P_{max}}

其中,I_{peak}表示最坏情况下的峰值电流(单位为A),P_{max}表示最坏情况下的功率消耗(单位为W),V_{DD}表示轨道电压(单位为V),ripple表示纹波指标要求的百分比形式,2表示瞬变电流为峰值电流的 1/2。

在电源/地分配路径中的封装引脚回路电感串联在芯片焊盘到电路板焊盘之间。该串联电感成为阻抗的一道障碍,或者说屏障。其阻抗可表达为下式:Z=2\pi fL。例如,在100MHz时,一个0.1nH电感的阻抗约为0.06Ω。即使板上电源分配网络阻抗被设计得极其低,在100MHz频率处从芯片向封装看过去,依然可看到一个0.06Ω的电源分配网络阻抗。显然,这就是片上电容和封装电容变得如此重要的原因。

由于封装电感与片上电容的相互作用,会出现很大的并联谐振阻抗尖峰。在很多情况下,可以通过封装中的去耦电容器抑制这一尖峰。例如,下图给出了封装中有10个不同的700nF电容器对0.1nH的引脚电感进行去耦,以减小阻抗尖峰的示例,并假定每个去耦电容器自身有50pH的等效串联电感(ESL)。

封装引脚电感、最高有效频率和目标阻抗之间的关系对应于:Z_{target}< 2\pi L_{pag}f_{max}

其中,Z_{target}表示目标阻抗(单位为Ω),L_{pag}表示封装内所有电源分配网络路径的等效引脚电感,f_{max}表示板级电源分配网络的最高有效频率。

与电容器本身及其到封装路径有关的等效串联电感值,可以划分为以下4个区段:
1.表面走线与平面腔顶层的回路电感:
2.从电容器焊盘到腔平面几个过孔的回路电感:
3.从电容器过孔到球栅阵列过孔之间的扩散电感;
4.从封装下的平面腔到封装引脚或焊球的回路电感。

假设信号和返回路径在远端短路,任何均匀传输线的回路电感都可以由下式给出:

L_{loop}=Z_{0}\times T_{D}=\frac{Z_{0}\times Len}{v}

其中,L_{loop}表示回路电感(单位为 nH),Z_{0}表示特性阻抗(单位为Ω),T_{D}表示传输线的时延(单位为 ns),Len 表示传输线的长度(单位为in),v表示材料光(电磁)速(单位为in/ns)。这个简单的关系式表明,对于任何类似均匀传输线的结构,为了尽可能将回路电感设计到最低,必须遵循以下两个重要的设计准则:
1.设计尽可能低的特性阻抗;
2.使用尽量短的传输线。

下图对3个对回路电感最有用的解析近似式进行了总结:

这些解析近似给出了重要的设计折中依据。如果希望减少从电容器焊盘到过孔之间走线的回路电感,则有以下3个重要的设计调节方案:
1.表层到电源/地腔顶平面的高度要短:
2.表层走线要宽;
3.表层走线要短。


要减少几个过孔的电感,有以下3个设计调节方案:
1.表层到电源/地腔顶平面的高度要短;
2.使用孔径很大的过孔;
3.过孔之间尽量接近。
为了减少平面的回路扩散电感,也有以下3个调节方案,
1.电源/地腔之间的介质厚度要薄;
2.使用孔径很大的过孔,或者与腔有接触的多过孔;
3.将电容器尽量靠近被去耦的封装,其效果有限。
虽然这些重要的设计准则都需要注意,但实际情况下有些准则相对而言更重要。

以下几项对总回路电感的影响最大:

1.表层到电源/地腔顶平面的高度要短:

2.电源/地腔之间的介质厚度要薄:

3.表层走线要宽;

4.表层走线要短。

n个电容器并联的等效电容、电阻和电感分别为

C_{n}=nC

ESR_{n}=\frac{1}{n}ESR

ESL_{n}=\frac{1}{n}ESL

其中,n表示并联的电容器的个数,C_{n}表示n个相同实际电容器并联的等效电容,C表示单个电容器的容值,ESR_{n}表示n个相同实际电容器并联的等效串联电阻,ESR 表示单个电容器的等效串联电阻,ESL_{n}表示n个相同实际电容器并联的等效串联电感,ESL表示单个电容器的等效串联电感。

下图所示为多个相同电容器并联的阻抗曲线,该图表明总的RLC曲线轮廓保持相似,但整个频率范围内总的阻抗是变低的。为了求解,假设电容器是分立的,其电流不重叠。此时自谐振频率保持不变,它的整体阻抗曲线按比例下降。这里得到了降低电容器阻抗的一种方案:让添加的多个电容器并联。

然而,如果两个电容器的容值或者等效串联电感不同,它们并联时的情况就不那么简单了下图所示为两个具有相同等效串联电感和等效串联电阻,容值却不同的电容器的并联阻抗曲线。

降低不同电容并联的阻抗峰值的重要途径有以下三点:

1.减小较大电容器的等效串联电感;·

2.增大较小电容器的容值;

3.同时增大两个电容器的等效串联电阻。

值得注意的是,电源分配网络互连虽然是一个复杂的结构,但却能在频域划分为5个简单的区段。基于各部件所影响的频率范围,下图绘出了这5个区段。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值