设计并实现一个面向特色咖啡馆的智能客服问答系统。该系统旨在通过自然语言处理技术,自动响应顾客在线咨询,涵盖咖啡品种介绍、菜单查询、营业时间、位置指引、优惠活动、预订服务等常见问题,以及提供个性化的咖啡推荐。系统应能够对顾客的自然语言提问进行准确的分类,并给出及时、准确、友好的回复,提升顾客体验,减轻人工客服压力。
基本要求:
序号 | 问题 | 类别 | 回答 |
1 | 你们店几点开门啊 | 营业时间 | 我们的营业时间是13点~20点哦 |
2 | 老板,你们几点上班? | 营业时间 | 我们的营业时间是13点~20点哦 |
... | ... | ||
50 | 能不能推荐一下咖啡?没喝过 | 招牌 | 我们的招牌咖啡是荔枝冰美式,欢迎品尝 |
51 | 最好喝的是什么? | 招牌 | 我们的招牌咖啡是荔枝冰美式,欢迎品尝 |
... | ... | ||
150 | 今天过去有折扣吗? | 优惠 | 今天我们全场所有咖啡买一送一,可以带朋友过来品尝 |
... | ... |
收集至少200条与咖啡馆服务相关的问答对作为训练数据,包括但不限于咖啡种类、店铺位置、营业时间、特色推荐等,确保数据覆盖各种常见场景。数据集可以参考如下形式进行设计:
(数据示例,仅作参考)
- 基于收集的数据,开发一个基于检索式的客服问答模型。顾客发送问题后,模型需能对顾客的意图进行分类,并进行标准回答。
- 在测试集上验证模型性能,确保至少80%的准确率。如出现跟所有类别匹配度低的问题,也能够给顾客较为满意的回答,使系统具有一定的健壮性。
扩展要求:
- 使用网络爬虫技术自动抓取数据集,或大量扩充问答对数据集,每个分类下的样本数量显著增加。