💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
英文描述:Suppose a voltage is a random variable X with normal distribution, the mean value is 5, and the variance is 0.1; The random variable x is measured 20 times by two instruments, and the measurement error of the two instruments is assumed to be a normally distributed random variable with a mean value of 0 and a variance of 0.1 and 0.4 respectively. Caculate the least square estimation (LSE), weighted least square estimation (WLS) and linear minimum variance estimation (LMMSE) of X, and calculate the mean square error of the corresponding estimation. Let the measurement equation be Z=HZ+V.
中文描述:假设电压是一个服从正态分布的随机变量 X,其均值为 5,方差为 0.1;随机变量 x 被两个仪器测量了 20 次,假设两个仪器的测量误差是正态分布的随机变量,其均值分别为 0,方差分别为 0.1 和 0.4。计算 X 的最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计(LMMSE),并计算相应估计的均方误差。让测量方程为 Z=HZ+V。为了解决这个问题,本文编程处理:
📚2 运行结果
主函数代码:
%%main
clear;clc;
%%状态值x误差满足均值为5,方差为0.01的正态分布
%%仪器1测量误差满足均值为0,方差为0.1的正态分布
%%仪器2测量误差满足均值为0,方差为0.4的正态分布
x=5; %状态值x均值
var0=0.1; %状态方差var0
var1=0.1; %测量方差var1
var2=0.4; %测量方差var2
r=20; %观测次数,增大观测次数
s = rng;
z1 = x+sqrt(var0)*randn(1,r)+sqrt(var1)*randn(1,r); %观测值z1
z2 = x+sqrt(var0)*randn(1,r)+sqrt(var2)*randn(1,r); %观测值z1
z=[z1';z2'];%观测矩阵z
h=ones(1,2*r)';%测量矩阵h
v1=ones(1,r)*var1;
v2=ones(1,r)*var2;
R=diag([v1,v2]); %观测方差矩阵R
[X_hat1,MSE1]=LSM(h,z,R);%最小二乘法估计
[X_hat2,MSE2]=WLSM(h,z,R,R^(-1));%加权最小二乘法估计 R^(-1)为最优权重
[X_hat3,MSE3]=MVE(h,z,x,var0,R);% 线性最小方差估计
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]邢永忠,吴晓蓓,徐志良.基于柯西分布加权的最小二乘支持向量机[J].控制与决策, 2009(6):4.DOI:CNKI:SUN:KZYC.0.2009-06-028.
[2]张小凤,赵俊渭,马忠成,等.基于加权最小二乘估计的双基地声呐定位算法研究[J].声学学报, 2004, 29(3):4.DOI:CNKI:SUN:XIBA.0.2004-03-016.
[3]牛善洲,张梦真,邱洋,等.基于全广义变分约束加权最小二乘的低剂量计算机断层重建方法[J].激光与光电子学进展, 2023, 60(4):7.DOI:10.3788/LOP212853.