【负荷预测】基于Random-Forest的负荷预测研究(Python代码实现)

        💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、Random-Forest算法概述

二、基于Random-Forest的负荷预测研究

三、优势与挑战

优势:

挑战:

四、应用实例

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于Random-Forest(随机森林)的负荷预测研究是一个结合了集成学习理论和决策树算法的重要领域,在电力负荷预测中展现出了优异的性能。以下是对基于Random-Forest的负荷预测研究的详细探讨:

一、Random-Forest算法概述

Random-Forest(随机森林)是一种基于集成学习的决策树算法,它通过构建多个决策树并将它们的预测结果进行汇总,从而得出最终的预测结果。与传统的决策树算法相比,Random-Forest具有以下几个显著特点:

  1. 集成多个决策树:随机森林不是通过单一的决策树进行预测,而是通过集成多个决策树来提高预测的准确性和稳定性。
  2. 随机性:随机森林在构建决策树时引入了随机性,包括随机选择待选特征和随机选择训练样本,这有助于增强模型的泛化能力。
  3. 自动处理不良特征:随机森林能够自动处理缺失值和异常值等不良特征,无需进行复杂的特征规范化或缩放。
  4. 防止过拟合:由于集成了多个决策树,随机森林在防止过拟合方面表现出色。

二、基于Random-Forest的负荷预测研究

在电力负荷预测中,基于Random-Forest的模型通过以下步骤实现预测:

  1. 数据预处理:对原始负荷数据进行清洗、归一化等预处理操作,以消除噪声和量纲不一致的问题。

  2. 特征选择:根据负荷数据的特性选择合适的特征,如历史负荷数据、天气条件、节假日因素等。

  3. 模型训练:使用预处理后的数据和选择的特征训练Random-Forest模型。在训练过程中,可以通过调整模型的参数(如决策树的数量、最大深度等)来优化模型的性能。

  4. 预测与评估:利用训练好的Random-Forest模型进行负荷预测,并通过评估指标(如MSE、RMSE、MAE等)来评估预测结果的准确性和稳定性。

三、优势与挑战

优势:
  1. 高准确性:随机森林在解决分类和回归问题时表现出色,能够捕捉负荷数据中的复杂关系和趋势。
  2. 鲁棒性强:由于集成了多个决策树,随机森林对噪声和异常值具有较好的容忍度。
  3. 自动处理特征:无需复杂的特征工程,随机森林能够自动处理不良特征。
挑战:
  1. 模型复杂度:随着决策树数量的增加,模型的训练时间和计算复杂度也会增加。
  2. 参数调优:为了获得最佳的预测性能,需要对随机森林的参数进行精细的调优。
  3. 数据依赖性:随机森林的性能在很大程度上依赖于训练数据的质量和数量。

四、应用实例

已有许多研究成功地将Random-Forest算法应用于电力负荷预测中。例如,有研究利用随机森林回归算法实现了短期电力负荷预测,并通过与其他算法(如SVM)的比较证明了其在预测精度和泛化性能方面的优势。此外,还有研究通过结合变分模态分解(VMD)和灰狼优化算法(GWO)来改进随机森林回归模型,进一步提高了短期电力负荷预测的精度。

五、结论与展望

基于Random-Forest的负荷预测研究在电力系统领域具有重要的应用价值。随着算法的不断优化和计算能力的提升,随机森林在电力负荷预测中的性能将得到进一步提升。未来研究可以进一步探索随机森林与其他机器学习算法的结合应用,以及如何在大数据环境下高效地训练和优化随机森林模型。同时,还需要关注如何提高模型的可解释性和可信度评估机制的建设等问题。

📚2 运行结果

部分代码:

# 初始化存储各个评估指标的字典。
table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典。

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.

[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.

[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.

[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024. 

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

Python中,结合遗传算法(GA,Genetic Algorithm)和BP(Back Propagation)神经网络进行回归预测,通常会涉及到以下几个步骤。这里我们以`scikit-learn`作为基础库来展示一个简化的例子: 首先,安装所需库: ```bash pip install numpy pandas scikit-learn matplotlib ``` 然后,假设你有一个包含数据集的CSV文件,我们可以按照以下步骤操作: 1. **数据预处理**: ```python import pandas as pd df = pd.read_csv('data.csv') # 假设有'features'列和'target'列 X = df['features'].values.reshape(-1, 1) # 特征 y = df['target'] # 目标变量 ``` 2. **初始化GA**: ```python from sklearn.model_selection import train_test_split from deap import base, creator, tools creator.create("FitnessMax", base.Fitness, weights=(1.0,)) creator.create("Individual", list, fitness=creator.FitnessMax) toolbox = base.Toolbox() toolbox.register("attr_float", random.uniform, -1.0, 1.0) toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, n=X.shape[1]) toolbox.register("population", tools.initRepeat, list, toolbox.individual) ``` 3. **定义适应度函数**(基于BP网络的MSE): ```python def eval_fitness(individual, X, y): # 使用individual参数更新神经网络权重 ... (设置神经网络权重) # 计算预测结果和真实值之间的MSE error = mean_squared_error(y, predictions) return error, toolbox.register("evaluate", eval_fitness, X=X, y=y) ``` 4. **遗传算法循环**: ```python pop = toolbox.population(n=50) # 初始化种群大小 for gen in range(100): # 进行若干代迭代 offspring = tools.selTournament(pop, k=3) # 筛选 offspring = [toolbox.clone(ind) for ind in offspring] # 深拷贝个体避免共享内存 for ind in offspring: toolbox.mutate(ind) # 变异 invalid_ind = [ind for ind in offspring if not ind.fitness.valid] fit_values = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fit_values): ind.fitness.values = fit pop[:] = offspring # 更新种群 best_solution = pop[0] # 最优解 ``` 5. **基于最优解建立BP神经网络**: ```python # 根据best_solution更新BP神经网络的权重 ... (设置神经网络权重) ``` 6. **测试和预测**: ```python predictions = model.predict(X_test) ``` 请注意,这只是一个简化版本,实际应用中可能需要更复杂的编码和参数调整。此外,遗传算法的具体实现可能会根据`deap`库有所不同。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值