【图像融合】梯度域多曝光多聚焦图像融合(Matlab代码实现)

     💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、引言

二、研究背景与意义

三、梯度域多曝光多聚焦图像融合算法

四、实验结果与分析

五、应用领域与展望

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

【图像融合】梯度域多曝光多聚焦图像融合研究文档

摘要:提出了一种多曝光多聚焦图像融合算法。该算法是为彩色图像开发的,基于使用每个像素位置的最大梯度幅值混合输入图像的亮度分量的梯度,然后使用基于哈尔小波的图像重建技术获得融合的亮度。该图像重建算法具有O(N)的复杂性,并且在每个分辨率下都包含一个泊松求解器,以消除由于所得梯度的非保守性质而可能出现的伪影。另一方面,融合色度是作为色度通道的加权平均值获得的。灰度图像的特殊情况被视为亮度融合。实验结果以及与其他融合技术的比较表明,所提出的算法速度快,在多曝光和多聚焦图像方面与现有技术相比,结果相似或更好
关键词:多聚焦图像融合多曝光图像融合梯度域图像融合梯度重建图像

一、引言

图像融合是一种将多幅图像合成为一幅图像的技术,旨在提取每幅图像中的有用信息,以生成具有更高质量和更多信息的图像。梯度域多曝光多聚焦图像融合是图像融合领域的一个重要研究方向,它结合了多曝光和多聚焦图像的优点,通过梯度域的处理方法,实现图像的高质量融合。

二、研究背景与意义

随着数字成像技术的不断发展,人们对图像质量的要求越来越高。然而,由于光学镜头的焦距和曝光限制,很难在一次拍摄中获得既清晰又曝光正确的图像。因此,多曝光和多聚焦图像融合技术应运而生。梯度域多曝光多聚焦图像融合技术能够充分利用多幅图像的信息,生成具有全局清晰度和正确曝光的图像,对于提高图像质量和视觉效果具有重要意义。

三、梯度域多曝光多聚焦图像融合算法

梯度域多曝光多聚焦图像融合算法的基本思想是利用梯度域的信息进行图像融合。首先,对输入的多曝光和多聚焦图像进行预处理,包括去噪、配准等步骤。然后,在梯度域中计算每幅图像的梯度信息,并根据梯度信息进行图像融合。最后,通过逆梯度域变换得到融合后的图像。

具体的算法步骤可能包括:

  1. 输入多幅多曝光和多聚焦图像。
  2. 对图像进行预处理,如去噪、配准等。
  3. 计算每幅图像的梯度信息,包括梯度幅值和梯度方向。
  4. 根据梯度信息进行图像融合,可以采用最大梯度幅值融合、加权平均融合等方法。
  5. 通过逆梯度域变换得到融合后的图像。
四、实验结果与分析

为了验证梯度域多曝光多聚焦图像融合算法的有效性,可以进行一系列实验。实验结果表明,该算法能够显著提高图像的清晰度和曝光质量,同时保留图像的细节和色彩信息。与其他图像融合算法相比,该算法在主观视觉效果和客观评价指标上均表现出优势。

五、应用领域与展望

梯度域多曝光多聚焦图像融合技术在许多领域都有广泛的应用前景,如医学影像处理、机器视觉、数码相机等领域。通过该技术,可以实现更高质量的图像获取和处理,为相关领域的研究和应用提供有力支持。

未来,随着数字成像技术和图像处理技术的不断发展,梯度域多曝光多聚焦图像融合技术将进一步完善和优化,为图像融合领域的发展做出更大的贡献。

📚2 运行结果

部分代码:

clear; close all;
%% Specifications of the set of input images
NameImg = 'office';                    % Name of the input image set
NumberOfImages = 5;                    % Number of images in the input set
Format = '.jpg';                       % The format or type of the input images

%% Preallocate stack where the images in the input set will be stored
tmp = imread(strcat(NameImg,'_1',Format)); [s(1),s(2),s(3)]=size(tmp); clear tmp;
I = zeros([s,NumberOfImages]); clear s
%% Read the input images
for i = 1:NumberOfImages
    I(:,:,:,i) = imread(strcat(NameImg,'_',num2str(i),Format));
end
%% Call the function to fuse the input images
G = GradientFusion(I);                 %Main function of image fusion
%% Display the fused image
%%
figure,
for i = 1:NumberOfImages,
    subplot(1,NumberOfImages,i),
    imshow(uint8(I(:,:,:,i)));title(['Input image ', num2str(i)]);
end

text(-1000,7500,'Histograms of grayscale vesions of input images')

figure,imshow(G),title('Fused image')

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]孙巍,王珂,袁国良,等.基于复数小波域的多聚焦图像融合[J].中国图象图形学报, 2008, 13(5):7.

[2]张永新.多聚焦图像像素级融合算法研究[J].西北大学[2025-02-02].

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值